APPENDIX B

SEQUENCING BATCH REACTOR TROUBLESHOOTING CHART

The following Sequencing Batch Reactor Troubleshooting Chart (pages 21–23) was adapted from the University of Florida TREEO Center's *Sequencing Batch Reactor Operations and Troubleshooting Manual.*

	OBLEM OR SERVATION	CONDITION	PROCESS CONTROL ANALYSIS	POSSIBLE CAUSES	CONTROL ACTION
	Loss of solids from reactor due to a high blanket	Poor sludge settling velocity and compaction	SSV _X , SSV ₅ , SVI, diluted SSV _X , microscopic examination, NH ₃ - N, COD, D.O., SOUR	 Glutting (old sludge) 	Decrease MCRT.
				 Classic bulking (young sludge) 	Increase MCRT.
				Filamentous bulking	 Identify conditions contributing to filamentous growth and correct. See comments in narrative below.
				Slime bulking	Add nutrients.
				Foam Trapping	Optimize pretreatment removal of oil and grease.
				 Highly nitrified or oxidized sludge 	 Increase anoxic cycle, reduce aerobic cycle.
				• Toxicity	 Isolate or split flow, identify source of toxic influent and eliminate, increase aeration cycle, increase MCRT.
				High organic loading	• Short-term, increase aerobic cycle; long-term, increase MCRT.
П.	Rapidly settling	Rapid sludge settling velocity and compaction	SSV _X , SSV ₅ , SVI, F/M, SOUR	Low F/M ratio	Increase F/M ratio by decreasing MLVSS.
	blanket leaving particulate. Difficulty in maintaining waste concentration				
Ш.	Turbid or cloudy	A.High effluent BOD or TS	MLSS, MLVSS, D.O., pH, temperature, Influent COD or TOC, Influent NH ₃ –N, D.O., SOUR	 Low MLSS or MLVSS 	Increase MLSS/MLVSS.
	effluent, disinfection problems			• Low D.O., temperature or pH	Increase aeration cycle in fill react, increase MLSS, add alkalinity.
				High organic loading	 If long-term, increase MLSS/MLVSS and aeration cycle.
				High nitrogenous loading	• If long-term, increase MLSS/MLVSS and aeration cycle.
				• Toxicity	 Isolate or split flow, identify source of toxic influent and eliminate, increase aeration cycle, increase MCRT.
		B. High effluent NH ₃ – N (Incomplete nitrification)	Influent and process NH ₃ – N, influent and process alkalinity, pH, temperature, SOUR, D.O.	 Influent NH₃-N overload 	Increase aerobic cycle.
				• Low D.O.	Increase aerobic cycle.
				Low temperature	Increase aerobic cycle.
				 Inadequate aerobic retention time 	Increase aerobic cycle.
				 Low pH or alkalinity 	Add alkalinity.
				 Low MLVSS (nitrifiers) 	Increase MLVSS.
				• Toxicity	 Isolate or split flow, identify source of toxic influent and eliminate, increase aeration cycle, increase MCRT.

21

PROBLEM OR OBSERVATION	CONDITION	PROCESS CONTROL ANALYSIS	POSSIBLE CAUSES	CONTROL ACTION
V. High-effluent TSS	Individual particle washout	Effluent and recycle TSS or turbidity, F/M, microscopic exam, SOUR	 Pin floc – low F/M, Pin floc – denitrification Pin floc – solids recycle Straggler floc – high F/M Straggler floc – filamentous Straggler floc – hydraulic Individual bacterial cells in effluent 	 Increase waste cycle, decrease MLSS. Increase waste cycle, decease MLSS, increase anoxic cycle. Optimize solids handling. Decrease waste cycle, increase MLSS, increase aeration cycle. Identify filamentous organism (see filamentous control above). See mechanical troubleshooting section. Decrease waste cycle, raise MLSS, increase aeration cycle, if toxicity, remove source of toxic influent.
V. High-effluent NO ₃ - N	High effluent NO ₃ — N	NO ₃ – N, pH, TOC or COD	 Lack of or inadequate anoxic conditions Lack of or inadequate carbon source Low pH, temperature or MCRT 	 Increase anoxic cycle (may require decreasing oxic cycle). Add carbon (methanol or acetic acid). Add alkalinity, increase MCRT.
VI. Difficulty in maintaining chlorine residual	Chlorine (Cl ₂)residual fluctuation, no chlorine residual	Cl ₂ residual, supernatant NH ₃ -N., NO ₂ -N, turbidity or TSS	 Incomplete nitrification/denitrification resulting in high NO₂-N in supernatant. High TSS in supernatant 	 High NO₂-N in supernatant will result in increased demand. Optimize nitrification and denitrification processes. High TSS in supernatant will result in increased demand. See
			Reducing agents in supernatant	 Problems I, III, IV. Reducing agents such as H₂S, Fe, Mn in supernatant. Investigate source and eliminate. Increase chlorine feed rate to overcome demand.
VII. High fecal coliform values	Sufficient chlorine (Cl ₂)residual, but high fecal coliform values	Supernatant TSS, free and total Cl_2 residual, supernatant NH ₃ -N, theoretical and actual CCC detention time	 Excessive TSS in supernatant Short circuiting of chlorine contact chamber (CCC) Chloro-organic compounds 	 High TSS in supernatant can result in "blinding" of disinfection process. See Problems I, III, IV. Calculate the theoretical CCC detention time. Conduct dye testing to determine actual detention time. If there is no NH₃-N in effluent but organic nitrogen is present, then false residual (DPD)may be present due to formation of chloro-organic compounds. Use free chlorine to establish residual not total chlorine. Reduce aeration cycle to de-optimize nitrification rate.

Source: University of Florida TREEO Center's Sequencing Batch Reactor Operations and Troubleshooting Manual.

22

Sequencing Batch Reactor Design and Operational Considerations

Sequencing Batch Reactor Troubleshooting Chart (continued)								
PROBLEM OR OBSERVATION	CONDITION	PROCESS CONTROL ANALYSIS	POSSIBLE CAUSES	CONTROL ACTION				
VIII. Foam	Excessive foam or scum on surface of SBR, flow		 Excessive filamentous bacteria. 	• The presence of hydrophobic filamentous bacteria may lead to excessive scum and foam. See section 1.5.				
	EQ tank or chlorine contact chamber		 Denitrification 	• Denitrification can result in sludge and foam on surface of SBR.				
			Nutrient deficiency	 Foam may also indicate a possible nutrient deficiency. This type of foam may be due to bacteria producing a natural polymer when subjected to nutrient deficient conditions for an excessive period of time. 				
			• SRT	• Both too low and too high an SRT can cause foam problems.				
			Fats, oil or grease	• Fats, oils grease and other non-degraded surface active organics can cause foam problems.				
			Overaeration	• Excessive (D.O. > 4.0 mg/L) may cause foaming.				

Source: University of Florida TREEO Center's Sequencing Batch Reactor Operations and Troubleshooting Manual.