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monitoring data from visual inspection activities over a period of time in order to predict
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the deterioration progress of infrastructure systems. Monitoring data play a vital part in
the managerial framework of infrastructure management. As a matter of course, the accu-
racy of deterioration prediction and life cycle cost analysis largely depends on the sound-
ness of monitoring data. However, in reality, monitoring data often contain measurement
errors and selection biases, which tend to weaken the correctness of estimation results. In
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Measurement errors .this. paper, the authors present a hidden Markov model tol tackle select.ion bia.ses i.n mon-
Selection bias itoring data. Selection biases are assumed as random variables. Bayesian estimation and
Bayesian estimation Markov Chain Monte Carlo simulation are employed as techniques in tackling the posterior
MCMC probability distribution, the random generation of condition states, and the model’s

parameters. An empirical application to the Japanese national road system is presented
to demonstrate the applicability of the model. Estimation results highlight the fact that
the properties of the Markov transition matrix have greatly improved in comparison with
the properties obtained from applying the conventional multi-stage exponential Markov
model.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical deterioration forecasting with Markov models has been widely documented as an important methodology for
hazard analysis in the practice of infrastructure management (Madanat et al., 1995; Shin and Madanat, 2003; Shahin, 2005;
Lethanh, 2009). A good example of its application is the PONTIS program (Golabi and Shepard, 1997), which was developed
for bridge management systems (BMSs). In Markov models, the deterioration of an infrastructure system is represented by
the transition probability among its discrete condition states, which reflect the status of its health.

In order to apply Markov models for prediction, it is necessary to employ monitoring data from historical inspections, the
quality of which is a decisive factor in the accuracy of estimation results. In infrastructure management practice, however,
monitoring data are often marred by errors and bias. Measurement errors can arise from the measurement system itself, the
inspector (human or machine), the inspected objects, or problems with data processing and interpretation (Humplick, 1992).
Such errors tend to cause bias in the estimation results of deterioration models, especially when there is a small pool of
monitoring data.
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Researchers have proposed methods of tackling problems related to measurement errors in monitoring data. Efforts have
been made to perfect evaluation techniques for quantifying the error term (Cochran and Cox, 1968; Grubbs, 1973; Humplick,
1992). In addition, to cope with small sampling populations of monitoring data and measurement errors, researchers have
proposed estimation methodologies using the Bayesian estimation technique (Hong and Prozzi, 2006; Park et al., 2008). To
overcome problems in spatial sampling, which is viewed as contributing to measurement errors, Madanat (1993a,b) propose
an optimization model using the latent Markov decision process (LMDP) to select the best sample size. To our knowledge, a
paper by Humplick (1992) is considered the fundamental measurement errors model for later models using LMDP in infra-
structure management.

In the paper of Humplick (1992), the author proposed a factor analytical model focused on differentiating the causes of
measurement errors as influenced by three categories: monitoring technologies, specific items, and measurement locations.
Measurement errors are quantified by weighting factors for error terms with respect to the three categories. The best tech-
nology offering least measurement error becomes preferable in adjusting the error term and defining performance distress.
Later research on LMDP then utilizes the estimation results of this measurement error model as input (Madanat, 1993a,b).

Another research orientation toward elimination of measurement errors, which is continuous-state expression of the
LMDP approach, is with the application of Kalman filter. This mathematical method originated from the field of statistic
and has been widely applied in many engineering fields. Theoretically, Kalman filter is an algorithm to generate estimates
of the true values of observations and their associated calculated values by predicting a value, estimating the uncertainty of
the predicted one, and finally computing a weighted average of the predicted value and the measured value. The weighted
average is calculated from the covariance, a measure of the estimated uncertainty of the prediction of the system’s state. As
the weighted average has a better estimated uncertainty than either alone, the estimates produced by the algorithm tend to
be closer to the true values than the original observations (Kalman, 1960). To the best of the authors’ knowledge, application
of Kalman filters for management of infrastructure system has been recently documented in the papers of Durango-Cohen
(2007) and Chu and Durango-Cohen (2007, 2008). Of the cited papers, continuous state-space models are discussed. The per-
formance or condition of an infrastructure system is reflected in a continuous performance indicator. Using the framework of
Kalman filter algorithm, authors of the cited papers have successfully discussed and proposed an approach for deterioration
prediction within a dynamic infrastructure management system, in which, heterogeneity factors, time-series and panel data
are used; effects of interventions over the life cycle of infrastructure system, and measurement errors are included.

The hidden Markov model is a special case of Markov chain model, which has been widely used in several research areas
such as image processing, speech recognition, and applied statistics (Robert et al., 2000; MacDonald and Zucchini, 1997;
Lawrence, 1989). One of the great advantages of the hidden Markov model is that it allows the unobserved condition state
to be captured, eliminating the noise and bias associated with monitoring data. Of cited studies on hidden Markov models,
the main focus has been on the accumulation of discrete-value in time series. In addition, several profound research studies
on hidden Markov models with unobserved states of regimes can be found in economics and finance engineering literature
(Hamilton, 1989; Diebold and Inoue, 2001; Hamilton and Raul, 1994), where the authors attempt to simulate and evaluate
the business cycle and switching of regimes by using non-stationary time series. One important finding is that the change of
longitudinal data can be simulated by means of transition probability. In addition, research has shown that the transition
probability can be identified in the non-linear auto-regressive approach using the Markov chain theory (Hamilton, 1989;
Kim and Nelson, 1999). However, a majority of past research on hidden Markov models has proposed estimation methods
to uncover unobserved condition states based on true condition states, which must be available as monitoring data. Under
such an assumption, it is certain that the true condition states of a system are no longer random variables. This fact is con-
sidered as a limitation of the cited research.

Apparently, research on the hidden Markov model has not been applied elsewhere in the literature of infrastructure man-
agement. In this paper, we develop a hidden Markov model to tackle a type of measurement errors in monitoring data so that
estimation outcomes can be more reliable for practical use. It is noted that the term “measurement errors” in our model is
referred as selection bias, which is explained in detail in Section 2. In the model, we assume that “true condition states” and
“observed condition states” of road sections are random variables. This assumption reflects the real possibility of having
selection biases in the system. In another words, we consider selection biases as random variables. This assumption is
one of the key features of our model, which is different from the assumption in past models. To describe selection biases
as random variables, a mixture of mathematical forms between “true condition states” of road sections and “observed con-
ditions states” or “selection biases” is proposed using the conditional probability distribution function. Also in our model, an
innovative numerical estimation approach using Bayesian estimation and MCMC simulation is presented to overcome the
difficulty of the complete likelihood function so that optimal values of the model’s parameters can be obtained.

In comparison with the proposed methods in the research work of Humplick (1992) and the use of Kalman filter in the
papers of Durango-Cohen (2007) and Chu and Durango-Cohen (2007, 2008), our paper is different from them in two funda-
mental research standpoints. Firstly, in our paper, we basically deal with a special type of measurement errors called selec-
tion bias. Precisely, we assume that measurements carried out by monitoring devices are precise. Selection biases occur due
to the maladjustments of engineers. A greater description of our assumption is presented later in Section 2. Secondly, the
hidden Markov model in our paper is developed for discrete space, while in Kalman filter models; the state-space is contin-
uous. Additionally, the hidden Markov model can represent an arbitrary distribution for the next value of the state variables,
in contrast to the Gaussian noise model that is used in the models employing Kalman filter (Capper et al., 2005).
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Furthermore, our work is a significant extended work toward estimation of Markov transition probability using inspection
data, which has been published in the paper of Tsuda et al. (2006Db).

Section 2 a framework on selection bias and the process of deterioration with hidden condition states. Section 3 details
the mathematical formulation of mixture distribution and hidden Markov transition probability. An analytical technique
using Bayesian estimation and MCMC simulation is discussed in Section 4. Section 5 presents an empirical study using data
of the Japanese national road system. Section 6 summarizes the contributions of the paper and includes suggestions for fu-
ture research.

2. Selection bias and hidden condition states
2.1. Selection bias and representation matter

This section details the problem of having measurement errors as selection bias in monitoring data. Based on this discus-
sion, we establish a theoretical base for using the hidden Markov model to predict the deterioration of an infrastructure system.

Measurement errors can be discussed either as systematic errors or random errors (Rabinovich, 2005; Humplick, 1992).
Systematic errors is defined as errors that stands unvarying or alter in a routine way in repeated measurements of one and
the same quantity. The errors can be somehow eliminated by introducing corrections. However, completely removing sys-
tematic errors is impossible. Remaining part of the errors becomes residual error, which will be the systematic component of
the measurement errors. Meanwhile, random errors are defined as differences between results of separate measurements,
and they cannot be predicted individually (Rabinovich, 2005). Random errors can be estimated by carrying out measure-
ments of one and the same quantity repeatedly under same conditions.

Errors of measurement can possibility occurs from various reasons. It can be due to the measurement system or inspector
(human or machine), the monitored items and locations, or from the data processing phase (collecting, filtering, analysing,
and interpreting). Depending on the nature and reasons of measurement errors occurrences, we can summary types of mea-
surement errors in following categories:

(1) Measurement errors specified to the machines (equipments, devices): In another words, measurement errors are depen-
dent of inspection technology such as using inspection various sensors and devices attached to inspection cars. Each
machine has its own capacity to measure the performance indicators (e.g. roughness index and cracking) and bear ran-
dom errors of their own measurement and precision.

(2) Measurement errors specified to item (or location): As the property of each item (location) is specific and different from
others. This characteristic of item (location) certainly affects the correctness of measurement (Cochran, 1968).

(3) Measurement errors specified to method and human: This type of errors occurs often due to the imperfection in use of
the method for measuring the condition states or the bias in human decision on interpretation of data. For instance,
different road engineers might have different interpretation of the same monitoring data, and thus, they record and
analysis them in different way, leading to errors in the immediate or final results.

In this paper, among others, the third category of measurement errors (measurement errors specified to method and hu-
man) is addressed for investigation. The investigated measurement errors belong to the group of systematic errors and occur
primarily from the selection of methods used to define condition states of road sections in a bias assumption. And therefore,
measurement errors in our paper are alternatively understood as “selection bias”. Following paragraphs describes the rea-
sons of selection bias occurrence and its existence in the monitoring data of a road system.

Fig. 1 shows monitoring data regarding the deterioration process of a road system, information which is used later in our
empirical analysis. The dots in the figure represent the relation of rutting amount measured at two inspection times 74 and tp
(ta < Tg) in the same road area. It is noted that road characteristics and inspection intervals vary a great deal with each sam-
ple. This fact implies that heterogeneity of the system is considered in our study. However, in the same figure, between the
two inspection times, there are samples of the road sections where preventive maintenance was not performed. As long as
no preventive maintenance is performed on the road, the condition of the road section cannot improve with the progress of
time. Therefore, all dots reflecting values of measurement samples should lie above the 45-degree line. However, as shown in
the figure, there are many samples positioned below the 45-degree line, indicating that there is considerable selection biases
in the condition measurement data for the road.

Again, It is important to emphasize the assumption in our paper “results from observations carried out by monitoring devices
are precise”. And thus, our model is developed to deal with the measurement errors referred as selection biases (measure-
ment errors specified to human). Selection bias occurs mainly due to the nature of the sampling when selected points for
evaluation are not perfectly representing the actual condition state of the system. Following items list out potential selection
bias and their reasons.

It is necessary to consider the existence of selection bias by comparing macro characteristics, such as average values, on
samples measured with different procedures. However, in the measurement of road deterioration, a different kind of selec-
tion bias exists, which we will call deterioration phenomena, a term which covers such matters as the rutting, cracking, and
surface irregularity occurring with deterioration. Following points list possible occurrence of selection bias:
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Fig. 1. Selection bias in monitoring data of pavement system.

e The road condition of a certain road area is defined by the deterioration phenomena that exist within that area. However,
there are numerous deterioration phenomena in a road area, and information on all such phenomena cannot be obtained
by road surface inspection.

e Road condition is therefore defined by deterioration phenomena randomly selected among all existing deterioration phe-
nomena. In this case, with two measurement times, it is possible that a deterioration phenomenon sample measured a
second time shows less deterioration than when measured the first time (the condition has improved before the second
measurement).

e However, unless preventive maintenance has been performed, the deterioration phenomena that were measured in the
first time still exist without being improved, and the condition has not improved. In this case, when defining the condition
of the road area, it is important to determine what deterioration phenomena have been selected.

e Selection biases occur when the condition of infrastructure is defined with different deterioration phenomena, and we
refer to this as the problem of “representation matter”.

In the evaluation of infrastructure, the deterioration condition is often defined by phenomena whereby deterioration has
most progressed. For example, with the empirical analysis in this study, three locations of the same road area were mea-
sured, and the condition of location with the most deterioration was used to represent the condition of the road area as a
whole. In such as case, the selection bias arises as follows:

e Engineers often choose different locations of a road section for uncover its condition state. However, they do not know
exactly where is the location in that road section with worst condition state.

o After inspections, for example, on three points (A, B, and C), they compare the deterioration between the three points and
choose the worst deteriorated one as representative.

o In the next inspection period, on the same road section, there is no guarantee that data from exact locations like in pre-
viously inspection is selected, and also no guarantee that the three points A, B, and C are located in the worst part of the
road. They are just randomly selected.

When the condition is defined with these above mentioned methods, theoretically, the condition cannot improve over
time. However, data obtained by surface condition inspection is from samples selected from deterioration phenomena,
and cannot be the deterioration phenomena with the most deterioration. Therefore, the condition defined by deterioration
phenomena randomly selected has the selection bias of having less deterioration than the true condition measurement.

In this study, we develop a hidden Markov model that takes selection biases into account, based on measurement data of
road sections, and then empirically analyses the existence of system selection bias in road measurements. Furthermore, in
practice, deterioration curves are often estimated by deleting the samples below the 45-degree line in Fig. 1, using samples
that are positioned above the 45-degree line. However, this does not solve the problem of selection bias due to representa-
tion matter.

2.2. Selection biases and the hidden Markov deterioration process

With Fig. 2, we explain the problem that arises when there are selection biases in condition measurements. Let us say the
true deterioration of infrastructure can be expressed with I rating indicators (called condition state in this study)
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Fig. 2. Selection bias and representation matter.
i(i=1,..., I).Ifi=1, the condition is best, and if i = I, it is the most deteriorated. Now, assume that the result of a condition
measurement taken at time 74 shows the condition to be m(t4)=m(m=1,..., I). However, selection biases might be in-
cluded in the measurement results. We express the true condition (with no selection biases) of time 7, as
mx(ta)=i(i=1,..., I). If selection biases exist in the condition inspection results, there is no guarantee that the “observed

condition” m(t4) = m is the same as the “true condition” mx*(t,4) = i, and also there is the possibility that a value representing
better condition state than the true condition state will be selected. Under such circumstance, the performance curve (or
deterioration curve) of a road section is likely to be underestimated, and therefore, resulting in the underestimation of life
cycle cost. This might be sometimes contradict with the finding of Madanat and Ben-Akiva (1994) under downward bias in
performance model, where measurement errors have been shown to increase the expected life cycle cost. However, in other
cases, where exists upward bias in performance model (Madanat, 1993b), the underestimation of life cycle cost is similar to
the finding of the cited paper.

Here, it is assumed that the measurement results of the condition inspection are subject to the discrete probability dis-
tribution fi(m|c;). However, when the true condition is i, fi{m|e;) is a conditional probability distribution whereby the condi-
tion is judged as m (hereinafter, conditional selection bias distribution). Also, ¢; is a parameter vector that characterizes the
probability distribution. Next, it is assumed that measurement was performed again at time 7= 74 + 7, after time z has
passed from time 7,. We express the measurement result of the condition inspection as m(tg) = n and the “true condition”
at time tg as mx(tg) =j. There is also no guarantee that these two condition measurements will be the same. From the above
measurement results, the pattern of the “observed condition” within the period [t4, Tg) is m — n. The transition pattern of
the “true condition” is i — j. If there are selection biases, it is impossible to know if the measured condition state at each time
is the “true condition state.” Therefore, it is the “observed condition” m — n that is measured with the condition inspection,
and the “true condition” i — j is not measured. Based on data regarding the “observed transition pattern,” even if we esti-
mate the transition probability 7, there is no guarantee that this is the same as the transition probability n;; defined by
the “true transition pattern.” In this way, if there are selection biases in the measurement results, the Markov deterioration
process defined by the “true condition state” is hidden behind the Markov chain defined by the “observed condition states”
with selection biases.

The characteristic of this study is that we use a hidden Markov model to show the state where the Markov chain of the
true deterioration process is hidden within data that include selection biases. With a hidden Markov model, it is a task simul-
taneously to estimate the probability f(m]|o;) that shows the mechanism of biases in the measurement results, and the tran-
sition probability m;; that is defined with the “true condition state.” Furthermore, to be accurate, it is impossible to predict
the “true condition state” i, or to know what conditional selection bias distribution the “observed condition state” m came
from, among the different conditional selection bias distributions fi{m|o;) (i=1, ..., I). Therefore, a methodology is needed
for estimating the conditional selection bias distribution that generates the data for the “observed condition state”. For this
reason, the hidden Markov model estimation becomes complicated, However, we will consider an estimation method in Sec-
tion 4.

3. The hidden Markov model
3.1. Multi-stage exponential Markov hazard model

Deterioration of a road section can be described as evolution of transition among discrete condition state. With Markov
chain model, the Markov transition probability can be described as follows:

Prob[m*(tg) = jim*(ta) = i] = T, W
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where
T >0 (ij=1,...,])

;=0 (when i > j)

; (2)
2 =1
=i

Given inspection data of respective road sections at times t4 and 7, and the corresponding characteristic variables (e.g.
traffic volume, thickness of road sections, etc.), the properties of Markov transition matrix ;; can be estimated through Max-
imum likelihood estimation approach. An explicit formula for estimating the Markov transition probabilities has been de-

rived by Tsuda et al. (2006b). In this paper, we briefly outline the formula in Egs. (3)-(6) for convenient of the readers. A

greater detailed of the formulation and estimation method for Markov transition probabilities using maximum likelihood
estimation approach should be referred to the original paper of Tsuda et al. (2006b).

J k-1 0
my(2) = Probim’ (zs) = jim(t4) =1 = Y- [ 55 exp(~t2) 3)
k=i m=iz=k ™
where
if ST
exp(—iz) = exp(—0iz), (4)
m=i,#k Om — Ok k=i m=i Om — Ok m=k Omi1 — Ok
and
k-1 )
on?Tok =1 (k=i
j:]' (i=1,...,1-1; j=i+1,...,]). (5)
Lo =1 (k=J)

Transition probability from condition state i to absorbing condition state I is eventually defined in the following equation:
-1

Ta(2)=1-> m(z) (i=1,....1-1). (6)
=i

In the above equations, 0; is referred as hazard rate and z is time interval between the two inspections. The hazard rate 6;
is a representation of hazard function, which is defined as conditional probability, a ratio of probability density function of
transition of condition state i (numerator) and survival probability function (denominator). In the cited paper, the hazard
function is assumed to follow exponential function form. A detail of exponential hazard function and its mathematical der-
ivation should be referred to original paper.

The hazard rate can be expressed by multiplicative form of characteristic variable x and unknown parameter f; (Lancaster,
1990). The unknown parameter f; is the target of estimation in statistical models, and it is often referred as model’s
parameter:

0,’ = Oi(X) = Xﬁ; (7)

Statistically, the characteristic variable x in Eq. (7) is often referred as model’s covariates or variables. This characteristic
vector genuinely represents the heterogeneity factors in our model. Example of the characteristic variables are daily or an-
nual traffic volumes, ambient temperatures, thickness of road sections, etc. Such characteristic variables are the factors
affecting the deterioration process. For instance, road sections engaging with a high number of daily traffic volume often
have faster deterioration than that engaging with less daily traffic volume. The values of characteristic variables of different
road sections are different, and therefore we consider them as observable heterogeneity factors.

3.2. Mixture distribution mechanism

This section explains the mathematical formulation of the hidden Markov model based on the mixture distribution
mechanism. Assumptions are as stated in Section 2. In fact, it is uncertain whether the probability distribution function
filmjey;) (i=1,...,1) can be used to estimate the true condition state i. However, we are able to express the probabilistic
dependence of observed condition state m(t4) =m on true condition state i by means of the likelihood function f(m|o;)
(i=1,...,D.

1

(m(ta) =m) =3 mi(Ta)fi(mo), (8)

i=1

where 7(7,4) is the probability of true condition state i at inspection time t4. Eq. (8) depicts the conditional probability dis-
tribution of observed condition state m(t4)=m on true condition state i. In other words, it portrays the conditional
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probability distribution of observed condition state m(t,) = m by averaging the distributed values of selection biases over the
range of true condition states. Models which mix mechanisms of selection biases are referred to as mixture distribution
models.

Similarly, the probability distribution of observed condition states at inspection time g = T4 + z(74 < Tp) can be described
with mixed forms. The likelihood function #(m(ztg) = n), to which observed condition state m(tg) = n at inspection time 7z can
be defined as

I

Um(t) =n) = m(ta Znu (). 9)

i=i j=i

As a result, the likelihood function ¢4(m(t4) = m, m(tg) = n), at which we observe condition state m(t,) = m at inspection
time 74 and condition state m(tg) =n at inspection time 7, can be defined as follows:

£(m(ta) = m, m(tp) Xl:n, Ta)fi(m|oy) (Z (2 ”|%)) (10)
i=1 Jj=i

It is noted that the random variables m(t,) and m(tg) (as well as m«(t4) and m«(tg)) are correlated through the Markovian
transition probability. The probability distribution functions fi(m|o;) and fi(n|o;) are independent of each other. In other
words, the distribution of observed condition states depends on hidden characteristics or selection biases at respective
inspection times 74 and 7.

3.3. Initial values of the condition states

As can be seen from Eq. (10), there are three unknown components: the initial distribution 7t;(t,4), the probability distri-
bution function fi(m|e;), and the Markov transition probability 7;;(z). The value of the initial probability distribution m{(ta) is
regarded as transcendental information. The initial probability distribution can be assumed as a variable of non-parametric
distribution. However, assuming it to be a non-parametric variable limits the study for a large number of monitoring data
since characteristic variables concerning one road section do not share the same values with those of other road sections.
It is therefore advisable to determine the initial value of the condition state immediately after M&R activities, when a road
section is renewed to a good condition state whereby i = 1. For example, if M&R action is carried out just before time 7o, the
initial probability distribution can be defined as

(7o) = {m1(To0),-..,T(To)} = (1,0,...,0). (11)
Evidently, properties of the vector 7(7p) are measurable. Thus, if M&R actions are implemented at alternative times
1, ..., T1, the initial value of probability distribution 7;(t4) can also be defined. To come up with a general likelihood function
for the conditional probability distribution of observed condition states m, observed condition states after M&R actions at
times 7, (t=1,...,T) are assumed as m(t,) = m.. Durations between two consecutive M&R actions from t — 1 to t are denoted
as z; (t=1,...,T). As a result, likelihood function L(«, m, z), which describes the conditional probability distribution of ob-

served condition states m = (my, ..., mr), can be recurrently defined:
L(o,m,z) = Zﬂ:”zlf]mﬂoc]) (my), (12)
an zofi(melog)(mer)  (1<t<T 1), (13)
1) = Z Ty (zr)fj(mr| o). (14)

j=h

The model’s parameters to be estimated are $ and «, which are embedded in the Markov transition probability 7;; through
Egs. (3), (7) and the probability mass function f{-) respectively. Likelihood functions in Egs. (12)-(14). The maximum likeli-
hood estimation method can be used to estimate the values of a model’s parameters based on numerical analysis with an
objective likelihood function. However, the method is limited in that it requires a high order of derivative and a high degree
of computation for solving the optimal condition of non-linear polynomial equations. Therefore, within the estimation
framework for the hidden Markov model, the maximum likelihood method is not the preferred approach (Titterington
et al., 1985). Attempts to overcome the limitations of the maximum likelihood method by using Bayesian estimation have
been proposed in a great number of advance statistic literatures (e.g. Geman and Geman, 1984; Scott, 2002; Jeff, 2006).

3.4. Complete likelihood function

Distribution of selection biases is assumed by means of a hidden variable s = (s, ..., s7). If there is no M&R action in the
inspection period, the following condition is satisfied:
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50:1§S1§...<57<I. (15)

Furthermore, if the hidden variable is measurable, its value can be used to update the probability distribution of true con-
dition state i, which is hidden because of selection biases. In addition, to identify the possibility of measurement of the hid-
den variable, a dummy variable § is assigned with the following conditions:

] St:i .
O = t=1,...,T; i=1,...,]. 16
ti {0 St?éi ( ) PR 1 ’ 7) ( )

With this assumption and according to Dempster et al. (1977), the likelihood functions in (12)-(14) are then described as
follows:

T

T 1
{7'511(21 2fi(my o)t H HTCU )% i (mefog) } = H {715 (20)fs (mefots,) }

t=2 joi t=1

L(s,a,m,z) =

e B I,’:1~

T, s (22) Hfst me|ot,)- (17)

In Bayesian statistics, Eq. (17) is commonly referred to as a complete likelihood equation, with a finer explicit form than
that in likelihood Eqgs. (12)-(14). Nevertheless, a difficulty remains at this point in how to assign a realistic value for the hid-
den variable s, since it is unobservable. In view of probability distribution, hidden variable s can be derived when full con-
ditional posterior distribution with Bayesian inference is applied. The prior probability distribution in the Bayesian
estimation is assumed as follows:

L(s,omz)  wfi(meo)

Prob{s; =i|s_¢, o, &} = . = , (18)
TS Lt m,z) S, oidi(medo)
where s_¢ = (S1,...,5¢1,511,---,57), S, = (S1,+-,Sc-1,8,S¢41,--.,57), and sy =i(i € {S¢_1, ..., Se1}). In addition, wj; satisfies
Tt TUjs, t=1
Wje = § Ts, 1jTs, 4 2<t<T. (19)
Ty ,j t=T
If the posterior probability distribution of hidden variable s; € {s;_1, ..., St+1} at time ¢t is measurable, transition probability
mif(z) (i=1,...,I;j=1i,...,1I) and probability distribution function f(m|a;) (i=1,...,I) can ultimately be estimated. It is also
noted that the posterior probability distribution of hidden variable s; € {s;_1, ..., S+1} is conditionally dependent on the ob-

served value of s_,.

To solve the likelihood function in Eq. (18), it is necessary to estimate the value of hidden variable s. The main task, there-
fore, is to estimate the two unknown parameters « and g, which are embedded in the transition probability functions. In
reality, the possibility of seeking the posterior distribution of all hidden variables is very hard. Thus, it is recommended that
MCMC simulation be used in randomly generating hidden variable s.

3.5. Conditional distribution of selection biases

As mentioned in section 2, the representative condition state of a road section generally happens to be the worst condi-
tion state among several observed on the same section. Thus, it is possible to assume the range of observed condition state m

inadomainm (m=1,...,1). The relationship between observed condition state m and true condition state i implies selection
biases on the same road section. Observed condition states can be considered to be chosen through a random selection pro-
cess. However, probabilistic inference on the value of probability distribution function f(m|o;) (m=1,...,1i) is a matter of
some difficulty. In this research, the distribution probability function f{m|o;) (m =1, ..., 1) is assigned to satlsfy the following
conditions:
0 whenm>i
fi(mio) = {oc" when m <i’ (20)
m X

where parameter o, is assumed as a non-parametric constant satisfying

0<o <1, (21)

i
> o =1. (22)

m=1

The probability distribution of parameter o/, can be estimated if the quantity of monitoring data is sufficient. This is a
non-parametric approach in cases where there is no prior information regarding selection biases. Moreover, the assumption
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in Eq. (20) reflects management practice and also eliminates the so-called “label switching” problem in hidden Markov mod-
el estimation (Zucchini and MacDonald, 2009; Scott, 2002).

4. Estimation methodology
4.1. Markov Chain Monte Carlo (MCMC) method

In statistics with Bayesian inference, prior and posterior probability are employed with the aim of estimating the values of
a model’s parameters. However, in hazard analysis, it is difficult to define the prior probability distribution, even in a simple
condition states deterioration model. Methods to overcome the problems in the assumption of prior probability distribution
often require numerical analyses with multi-dimensional integration, and this necessity remains a limitation of Bayesian
estimation.

In recent years, an appealing solution to the problem in Bayesian estimation has been proposed, with the application of
MCMC simulation. The MCMC simulation technique is attractive because it requires neither a high level of derivative nor
multi-dimensional integration of a model’s objective functions. Estimation results in a great deal of applied statistics re-
search have been improved through a combination of Bayesian estimation and MCMC simulation.

In MCMC simulation, Gibbs sampling and Metropolis Hastings (Metropolis-Hastings or MH) techniques have been exten-
sively discussed. Our list of references includes a good example of the use of MCMC simulation in research related to image
restoration. In the cited study, the algorithm of Gibbs sampling was used to estimate the posterior distribution in Bayesian
estimation. In MH law, the iterative parameter f§ is defined by repeatedly generating random numbers through the condi-
tional probability density function. In the present research, we propose an extended estimation methodology to estimate
the parameters of the hidden Markov model based on the literature regarding Bayesian estimation for the Weibull hazard
model of Tsuda et al. (2006a).

To estimate further the parameters in hidden Markov models, an analytical approach using method of maximum likeli-
hood has already been shown to have limitations (Titterington et al., 1985; Robert, 1996). Since the hidden Markov model is
considered as one type of mixture distribution model, a great deal of research has suggested defining a set of complete like-
lihood functions instead of using conventional likelihood functions (Diebolt and Robert, 1994; Robert et al., 2000). In view of
MCMC simulation, it is necessary to develop an explicit algorithm for estimating the Markov transition probability with mul-
ti-condition states. In this research, we propose an analytical approach using Bayesian estimation and MCMC simulation for
estimating the Markov transition probability of the multi-stage exponential Markov model, which is briefly presented in sec-
tion 3.1.

4.2. Formulation of the model

Visual inspection is carried out on each section k of the entire road system (with K as the total number of road sections).
The observed data on each section over a time-series can be denoted as t* (t =1, ..., T), with T* as the number of inspection
times for road section k. Each observed condition state from the visual inspection is represented as m(t¥), with the sign indi-
cating measurable data. & = (¢',...,&K) is denoted as the vector of measurable data concerning Zf; T* number of records.

The deterioration process of a road section is influenced by the changes in values of characteristic variables such as traffic
volume, thickness of overlay, and weather. The values of characteristic variables are recorded and stored as monitoring data.
To consider the effects of characteristic variables on deterioration, vector x* is assumed to represent characteristic variables.
In addition, duration between two consecutive visual inspections is defined as z¢ = t¢ — ¥ . In summary, observed informa-
tion concerning each section of road can be symbolized as & = (m¥, z, x¥), with m(t¥) = m¥. As a result, simultaneous prob-
ability distribution for the entire K samples can be defined as follows:

Tk 1-1 k

L(o,m, ,9) ﬁ{]‘[nsk (2 Hfsk (mt|ocsk)} :H H“mk Z 11 o’<9 7 P (-o2) ¢ |- (23)

k=1 l=sk - Li=sk =

In likelihood Eq. (23), theoretically, hazard function can be described either by using exponential form as 0¥ = exp(x*f;) or
by plain form (refer to Eq. (7)). In order to estimate unknown parameters and hidden variables (selection biases), we need to
propose a feasible numerical method to solve the likelihood function in Egs. (12)-(14). By solving Eq. (23), the values of « =

(o1, ..., 0_1), f= (B1, ..., Bi_1), and hidden variable s = (s!, ..., s¥) can be obtained. If parameter vectors « and § are known,
the posterior distribution of hidden variable sk(t = 1,...,T% k=1,...,K) can be estimated as well. Given the condition
st =(st, .S 0y Stirs---»S%), the conditional probablllty, in which hldden variable s¥(sk € {sk ;... sk ,}) equals true con-

dition state i, is finally estimated:

wk k
Prob{sf =ils*,, o, ¢} = Wifi(me|o6) , (24)

Sk

Sy offmtloy)
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4.3. Bayesian estimation

As a common practice in Bayesian estimation, the assumptions for prior probability distribution of parameters « and g
should be based on various sources of prior experience information (Jeff, 2006). Any new information concerning monitoring
data ¢ shall be directly used for the estimation of likelihood function L(x, $, ¢). The updating rule in Bayesian estimation con-
stantly improves the level of accuracy for prior probability distribution of parameters. By using the most up-to-date mon-
itoring data, values of parameters oo and p specifying the probability density function p(«, p|¢) can be simultaneously
obtained. However, according to Ibrahim et al. (2001), a single time of assuming the prior probability density function cannot
guarantee the accuracy of estimation results since prior probability density function can be assumed in various ways. Thus, it
is advisable to define prior probability density function concomitantly with visual inspections. As a rule of thumb, the influ-
ence of the prior probability density function will gradually decrease as the number of monitoring data increases.

As mentioned in Section 3.5, constant parameter o; = (o, ..., o) in Eq. (20) is assumed to satisfy the conditions in Eqs.
(21) and (22). On that account, we introduce conjugate Dirichlet distribution for the prior probability density function of
constant o;:

e i (25)
(vi+---+v) ;
Pi(v) = —1L 12 and o =1
' rey)---rm) mz::l "
It is noted that Dirichlet distribution infers a constant parameter v\ = (v},...,v}), which spontaneously satisfies the con-

stant parameter «; in (21) and (22).
The assumption for the prior probability density function of parameter f; can be defined in the next step. The conjugate
multi-dimensional normal distribution g; ~ Ny, ({;, ;) is assumed for the prior probability density function in M dimension:

1
h(Bilti, Zi) = ————-¢€
(2m)2 /| %]

where X; and {; of Ny ({;, ;) are covariance matrix and standard covariance of the prior distribution respectively. As a result, a
proportional result of the probability density function p(o, s, £) can be re-formulated:

0 { - 5 0T (- 0}, (26)

1-1

p(o Bls, &) oc L(ot, B,5,¢) | [Ah(Bil s Zi) i 0ui]v') }
i1

-1 k

“H[Hi 11 ﬁexp ~07) Hexp{ ~L% (Bi- co/}-(na;‘;k)(r[ (aﬁny”m—l)].
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4.4. Gibbs sampling

A direct estimation of probability density function p(«, f|¢) in hidden Markov models is impractical. By using the MCMC
simulation, value samples (specimens) of parameters « and 8 can be alternately extracted from the probability density func-
tion (Geman and Geman, 1984). In Eq. (27), parameters o« and 8 can be mutually used to express the probability density func-
tion. Approximation of p(a|s, ¢) and p(f]s, ¢) can be further described as follows:

plas. & (H ﬁam>{ﬁn o) 1} (28)

1 t=1 i=1 m=1

Tk Sk k
p(Bls, &) {HH ) [ I e i 9"4]}Hexp{ - )zi*](ﬁ,-fzi)’}. (29)

k=1 t=1 j=sk =~ |i=sk 171

The conditional posterior distribution of hidden variable s can be expressed in Eq. (24). A detailed procedure of the ana-
lytical approach using Bayesian estimation and MCMC simulation is given in the following steps.

4.4.1. Step 1: Initial parameter values

Parameter vectors v' (i=1,...,I), {;,and Z; (i=1,...,I — 1) of the prior probability distribution in Egs. (25) and (26) have
an arbitrary set of values. The value of the hidden variable s = (s, ... 59y is initially chosen so as to satisfy
sk0) — (s’l"o,...,s’;‘(’), 1<s9< <0<, and mk<s¥° (t=1,...,T; k=1,...,K). The influence of initial values o

and p% gradually becomes weaker as more information generated by MCMC simulation is accumulated. To begin with
the iteration, a sampling number n in MCMC simulation is assigned as n=1.
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4.4.2. Step 2: Sampling parameter o™

This section describes the estimation of oW = ocg ). (x, 1) based on prior hidden variable s""~). The probability density
function p(o™|s""~1), ¢) in Eq. (28) can be rewritten, w1th an extended description o/ = (o7 :m =1,...,i):
= () [o(n=1) L s i in\vi,—1 i iy Vi HNEED g
o™iV e) o S TT T omy  pq TT ™4 = T (et : (30)
k=1 t=1 m=1 m=1

where N:"1 is defined in the following equation, particularly when values of condition state m and hidden variable s~V
are available:

N = g {m = st =i (31)

Indication #{-} in Eq. (31) presents the number of measurable samples, to which the equation in the parentheses {} refers.
Parameter o in Eq. (30) is assumed to follow Dirichlet distribution, with its parameter as vi. + N:""") _ 1, The parameters of
Dirichlet distribution are subsequently updated by using extracted samples o = (o™ ..., o™} through Gibbs sampling. It
is noted that samples of parameter a§”> are evaluated from the entire range of condition state i(i=1, ..., I).

4.4.3. Step 3: Sampling parameter g™

This section describes an algorithm for estimating unknown parameter 8 of the multi-stage exponential Markov model.
Additional notation of the unknown parameter is f_q. It is noticed from the notation that element f4(e, q) (e,q=1,...,M)is
excluded from the list of unknown parameter B. Thus, we formulated the conditional probability density function
P(BeglP—eq S, &) Of feq based on the assumed value of _.q in Eq. (29):

stk

€ ! K Tk ! tk _ stk j y
COUBEEES 1 010101 11 DU O I PR R ST
i j =i h=i I=i#h

otk

e I K Tk [j-1 5;(< otk i h-1 1 ij qq .
x H H H {H {exp Beqs) } Z H ()k o exp (—922’;)} exp{_Te(ﬁeq - Cg)z}’
i=1 j=e k=1 t=1 | I=i h=i I=i#h
M
U=0+ D (B — )0l (32)
h=1,#q

where §f and 6§ are dummy variables:

w_ )1 whensi, =i=e and st—J1 when sk | =i, sk=j
© 0 otherwise 0 otherwise

{?and o are the prior expected values of vector ¢, and prior standard covariance of entire procession >, ! with respect to
condition state g and (h,q). In addition, Zh"":#q is the summation of all condition states from ZhM:L#q' excluding index q. Ex-
pected condition state is generated by using conditional probability density functions. By using the generated condition
states, we can come up with the posterior distribution of parameter . A detailed MCMC simulation for estimating the pos-
terior distribution will be presented later. In this section, a summation of the random sampling procedure for parameter
A = (ﬁg ,...,/f,”w,) up to this point is presented as follows:

Step 3.1 - Value of parameter " is randomly generated from p(5" "' n ), =D ¢),

Step 3.2 - Value of parameter 43 is randomly generated from p(g\y|p",", s® 1. ¢&).
Step 3.3 - Procedure similar to steps 3.1 and 3.2 is repeated.
Step 3.4 - Value of parameter f",,, is randomly generated from p(f\" 1M\ﬁ - ]M ,s=D gy,

Gibbs sampling is applied to generate condition states from (I — 1)M conditional posterior probability density functions.
The so-called “adaptive sampling rejection” (Gilks and Wild, 1992) can be used as a technique to generate specimens of
parameters in the posterior distribution, which is explained in Eq. (32).

4.4.4. Step 4: Updating hidden variable
Given the prior value of hidden variable s*{""" = (s&n ... skn =~ gk=D kD) '3 new hidden variable s™ is randomly
selected based on the conditional probablllty law in Eq. (24). Random generation applies for all condition states

kn [ kn k.n k,(n-1)
St (St E{SF“.,.,SPrl })
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k.(n-1) koM
oy " V(")

2 (o ar t=1)
i1 @ hlmdley
w’.“(”’]jfi(m‘[ﬂcé")) k
k _ i ck(n=1 i : 2<t<T
PTOb{Sf = l|<x7s,t )7 é} = SI:L l)wk.(n l)f_ (mk‘(x(n)> ( = ) . (33)
- kn jt i t1%5
=5
" Vi (mt ") (at t=T%
j’.zsiml wj’.‘r‘("’nfj m’t‘\ocj(.")
Hidden variable s"(t = 1,..., T) is estimated in succession, starting from t = 1 for all numbers of sample k (k=1, ..., K).

4.4.5. Step 5: Determining algorithm adjustment

After step 4.4.4, the values of parameters o', 8™, and hidden variable s'™ are recorded. In the next iteration n =n + 1, the
program returns to step 4.4.2. If the algorithm satisfies n < n, the program stops.

A major concern is the number of condition states generated in simulation. The number should be carefully examined. In
several cases, steady condition states could not be reached even though a large number of condition states had been accu-
mulated. It is desirable to eliminate this problem by introducing a minimum set of parameter value as n. In fact, values of
parameters o™ and ™ (n =n+ 1,n+ 2,...,n) are embedded in the posterior probability density function p(a, |¢) through
Gibbs sampling. As a result, estimation of the posterior distribution of parameters «,  becomes analytically feasible. To ver-
ify the estimation results, we apply the Geweke statistical test.

4.5, Posterior distribution statistic

Statistical testing for parameters « and f can be carried out based on samples generated by using MCMC simulation. How-
ever, in the simulation, the probability density function p(«, §|¢) cannot be considered as an analytical function. Therefore,
instead of using a full parametric approach for statistical testing, a non-parametric approach is recommended. With the

Gibbs sampling method, samples concerning 6™ = (cx(”h [f(")) (n=1,...,n) are generated. Among generated samples, the

first n samples will be removed. A new set of samples is then defined as a replacement, with its subscriptions as
M= {n+1,...,n). By applying this approach, joint probability distribution functions G(«) and G(f) can be defined:

#(m <o, neM)

G(o) = - : (34)
#(B" < p, neM)
G(p) = T : (35)

where #(™ < , n e M) is regarded as total number of samples, from which logical expression g™ < f, n e M is satisfied.
Moreover, expected values of standard variance ;(;) and covariance matrix X;(;) are estimated (refer to the formulation in
Geweke, 1991):

Confidence intervals of parameter o and 8 are examined and determined by using samples generated from Gibbs sam-
pling. For example, 100(1-2¢)% confidence interval of parameter « is defined by using statistical sampling order

(8 ‘8)(1’:1,...,1*17 m=1,...,M) with f,, < i < Bin:

FPim> Fim

# (Bl < Bimr 1 EM)
—n

&
Pim = arg lTl.an

im

<ey, (36)

=1

#(B = B neEM)
n—n

Bim = arg min <&y, (37)

im

It is noted that the initial value of parameter 0'*) guarantees for true condition states neither for prior distribution nor for
posterior distribution in MCMC simulation. Thus, it is necessary to consider n samples generated by Gibbs sampling as pos-

terior distribution of the first n set 0 = (&, ™) (n =1, ..., n). When the number of samples increases to n + 1, a hypothet-
ical test using the Geweke statistical test is performed to verify whether samples emanate from the prior or posterior
distribution. In the next step, sampling distribution 6™ (n=1,...,n) is divided into two subsets, n; and n,. In the Geweke

statistical test, ranges for the two subsets are recommended as n; = 0.1(n — n) and n, = 0.5(n — n), respectively. According to
Chib (1995) and Newey and West (1987), the Geweke statistical test (referred as Z-score) used to verify values of parameter «
can be outlined as follows:
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wherefii (x) (I=1,2)is the probability density function and the value of27tf;,. (0) is estimated from the following equations:
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The value of coefficient g, which represents the approximate value of spectrum density, should equal 20, as recommended
in the practice of the Geweke statistical test (Geweke, 1991).

In this test, null hypothesis Hp and alternative hypothesis o/, concerning the invariance distribution of setting-values for
parameter o/, can be defined as

Ho :1Z, | <zyp 7 (40)
H, : ‘Z“'m‘ > Zy)2
where zy, is the critical value to be applied for rejecting the null hypothesis. If the given hypothesis is accepted, the null
hypothesis can be defined by a significant level ¥%, to which the condition zy;, ¥/[2%=1 — ®(zy;) is satisfied. P(z) is
the distribution function of the standard normal distribution. As for hypothetical testing for the distribution of the parameter
Bim (i,m=1,..., M), a similar approach can be applied.

5. Empirical application
5.1. Summary of database

We applied the hidden Markov model proposed in this study to the surface inspection results of the past 9 years of a gen-
eral national road managed by M prefecture, and attempted to predict road rutting deterioration. The targeted database was
comprised of data regarding maintenance history and data regarding surface inspection. Surface inspection was conducted
every 3 or 6 years. The road area targeted for analysis is approximately 60 km of a general national road in M prefecture, and
measurement samples of 100 m units were accumulated. From 1986 to the present, rutting measurement has been period-
ically conducted with measurement vehicles. The managed database used as the applied case of this study is the road surface
inspection data of the period between 1998 and 2005. From the data, we focus on the rutting process of the asphalt road.
Furthermore, records regarding road maintenance conducted during the period of analysis are also accumulated. For the sur-
face areas where road maintenance was performed, we defined a sample time-line with the beginning point at the initial
time, and created a database for the hidden Markov model estimation. Therefore, measurement samples are composed of
rutting measurements at the initial time and the following consecutive measurement times, and information regarding
the measurement intervals. The database also includes traffic information and road conditions from each measurement sam-
ple. A total of 5261 measurement samples were created in this way.

In general, inspection results of public works are expressed as discrete condition indications, after structural and func-
tional judgement. Therefore, it is possible to express the deterioration process with a Markov chain model. However, the rut-
ting measurement data of the road used in this study are recorded as continuous data. In order to estimate the deterioration
prediction model proposed in this study, it is necessary to replace the continuous value of rutting amount with a discrete
condition value. In road management, the continuous measurement values of rutting, cracks and irregularity are often chan-
ged into several discrete indicators after technical judgement is made. With this study, we categorized the condition of rut-
ting into five ratings, shown in Table 1, according to M prefecture’s technical policy. Of course, creating discrete categories
will cause the deterioration estimation model results to differ. However, from the perspective of road management, it is
important to estimate the time it takes to reach the limit of rutting (15 mm or 20 mm). We used a rating method different
from that shown in Table 1, and performed a sensitivity analysis regarding the time it takes to reach the rutting limit. As a
result, there was no remarkable difference in the prediction results with regard to time, so it was decided to use the condi-
tion rating as shown in Table 1.

We refer to the measurement condition values of two continuous times as prior condition and posterior condition. In Ta-
ble 2 we arranged the measurement samples used in a multi-stage exponential Markov model, with a focus on prior condi-
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Table 1
Description of condition states.
Condition states Range of rut values
1 <5 mm
2 5mm<(-)<10 mm
3 10 mm<(-)<15 mm
4 15 mm < () < 20 mm
5 >20 mm
Table 2
Sample numbers.
Prior condition states Posterior condition states
1 2 3 4 5
1 331 339 32 5 0
2 573 1919 468 187 47
3 66 240 382 163 44
4 50 63 52 82 67
5 2 22 16 27 84

tion and posterior condition. Each row of the table corresponds with prior condition i and each column with posterior con-
dition j. Here, we extract samples with no road maintenance between the two measurement times. However, as shown in the
table, there are many samples in which the posterior condition exceeds the prior condition. In particular, there are many
samples in which the prior condition is 2 but the posterior condition is 1. The fact that road maintenance has not been per-
formed on these samples between the two times is evidence that there are many selection biases in the data for analysis.
In our empirical study, two objectives are discussed. The first objective is to compare the estimation results of two models
(the multi-stage exponential Markov model of Tsuda et al. (2006b) and the proposed hidden Markov model) using two set of
database. The database used in proposed hidden Markov model contains 5261 data, which include also the data located un-
der 45-degree line (refer to Fig. 1). Meanwhile, database used in multi-stage exponential Markov model contain 4347 data,
which does not include data located below 45-degree line. In this respect, we emphasize the use of the models in different
situations but not strictly compare them. The second objective is discussed in Section 5.3, where we further compare the
estimation results of hidden Markov model on two different cases. In such two cases, we create datasets with assumption
of having selection bias and estimate the model’s parameters in order to understand the deterioration performance curves
in two different cases. From which, we can benchmark for the better model under the situation of having selection bias.

5.2. Estimation results

In the empirical study, annual traffic volume of large-sized cars is considered as a main characteristic variable affecting
the deterioration or the hazard rate in Eq. (7). Denotation for traffic volume is x;,, which is observable. The first characteristic
variable x;; equals 1 as a constant value representing the overall influence of other variables.

Table 3 presents comparative estimation results of our empirical study using both the multi-stage exponential Markov
model (Tsuda et al., 2006b) and the proposed hidden Markov model. It is noted that with multi-stage exponential Markov
model, data located above the 45-degree line is taken as input. Meanwhile, with the proposed hidden Markov model, all data
in Table 2 is considered. Table 3 also highlights the fact that traffic volume exerts a strong influence on deterioration, espe-
cially for the first two condition states. The obtained values of parameters with the hidden Markov model are satisfied with
credible intervals and convergent criteria in the sense of samples’ auto-generation in Bayesian estimation and MCMC sim-
ulation. (Values of the Geweke test are less than 1.96.) In the Geweke statistical test, we estimate the z-score values (Geweke,
1991) based on 7000 sampling values of model’s parameters (Total number of samples are 10,000, the first 3000 samples are
excluded as for burn-in period in order to achieve convergence in the sampling process).

Further comparing the differences between results of the two models, we estimate the life expectancy of condition states
and present the results in Table 4. Relatively, either with the multi-stage exponential Markov model or the hidden Markov
model, it can be stated that the hazard rate of condition state 1 is very high. Its high value results in a considerably high
speed of deterioration. After about 3 years in operation, road sections with condition state 1 tend to disappear. Condition
state 2 has the longest life expectancy, at approximately 12 years. Meanwhile, life expectancies of condition states 3 and
4 are about 8 years. For a better understanding of transition probabilities, we demonstrate the Markov transition probability
matrices in Table 5.

Fig. 3a presents a comparative picture of deterioration curves. In the figure, the dotted curve represents the decrease in
survival probability of corresponding condition states with the multi-stage exponential Markov model. The solid curve is of
the estimation results of the hidden Markov model. In view of selection biases, the dotted curve contains bias and does not
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Table 3
Estimation results for model’s parameters.

Condition states Multi-stage exponential Markov model

Constant term Traffic volume

Hidden Markov model

Constant term

Traffic volume

Bin Bi2 Bin Bi2

1 0.294 0.341 0.194 0.249
[36.297] (8.301] (0.189, 0.199) (0.225,0.277)
- - 0.239 0.946

2 0.049 0.204 0.079 -
[27.008] [20.813] (0.078, 0.081) -
- - 0.134 -

3 0.120 0.019 0.113 0.029
[25.582] [1.454] (0.108,0.119) (0.010,0.051)
- - 0.058 1.476

4 0.116 0.014 0.122 -
[15.507] [0.646] (0.117,0.126) -

0.022

Notes: Values in [-] show t-values and values in (-) are of lower and upper bound values of 95% credible interval. The

third values in each row are from the Geweke statistical test for verifying convergence of simulated samples.

Table 4
Life expectancy of condition states.

Condition states

Multi-stage exponential Markov model

Hidden Markov model

E[0:] E[RMDY] (years) E[04] E[RMDY] (years)
1 0.244 4.098 0.246 4.059
2 0.072 13.947 0.079 12.663
3 0.087 11.494 0.119 8371
4 0.084 11.933 0.122 8.195
Table 5

Markov transition probability.

Condition states Condition states

35

1 2 3 4 5
1 0.696 0.293 0.011 0.000 0.000
2 0.0 0.932 0.064 0.003 0.000
3 0.0 0.0 0.898 0.096 0.006
4 0.0 0.0 0.0 0.894 0.106
5 0.0 0.0 0.0 0.0 1.0
Note: Interval of transition is one year.
(a) Elapsed time (years) (b) Elapsed time (years)
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Fig. 3. Performance curves.
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truly reflect the deterioration progress of the rut index on the entirety of road sections. Its estimation is based purely on the
data located above 45-degree line (4347 data), with embedded selection biases. The solid curve in the figure reflects true
deterioration progress, since the hazard rate and life expectancy of condition states are calculated with all data (5261 data),
which includes data located below 45-degree line.

Differences in estimation results of the two models are proved from examining displayed outcomes of Tables 3, 4, and
Fig. 3a. As a matter of course, the prediction of deterioration speed in the case of the hidden Markov model has been im-
proved. The deterioration speed is faster than the deterioration speed predicted by the multi-stage exponential Markov mod-
el. The distance between two deterioration curves increases along with the operation time of roads. This is due to selection
biases that the multi-stage exponential Markov model cannot capture (that is, road inspectors/engineers tend to select worst
visual condition states among collected data points as representative condition states for the entirety of road sections), but
not necessarily that the collected data points representing for the real worse part of the road section. As a result, a slower
deterioration speed occurs in the estimation of the multi-stage exponential Markov model.

Another interesting finding can be drawn from observing deterioration curves in Fig. 3a. It is noted that selection biases
occur with all condition states. However, the intensity of selection biases increases with higher condition states such as
states 3 and 4. The increasing of selection biases with higher condition states can be viewed as underestimation of the hazard
rates of those states. This problem is likely to happen with road sections which received M&R activities in the past but for
which M&R records are missing. This finding suggests the necessity for a future study to develop a methodology to capture
accurately the transition pattern of performance indexes (road distress) like the rut index.

5.3. Estimation bias

The aim of this section is to compare the estimation results of using the proposed hidden Markov model on two datasets
with assumption of having selection bias. With data such as that shown in Fig. 1, the areas below the 45-degree line (where
the posterior condition measurement improved compared to the prior condition measurement) are suspected to have selec-
tion biases. We made (1) a database without the data below the 45-degree line (Truncated DB) and (2) a database with all
posterior condition measurements below the 45-degree line matched to the prior condition (so that the posterior condition
has not changed from the prior condition) (Censored DB). The results of the estimation are shown in Table 6.

Moreover, Table 7 shows the average hazard rate of the entire target area, using the Truncated DB and Censored DB. By
comparing the average hazard rate E[0;] shown in Table 4 and the average hazard rate of Table 7, it is possible to see that
with both the Truncated DB and Censored DB, the average hazard rate of condition 1 is smaller than the average hazard rate
E[0;] sought with a hidden Markov model. On the other hand, when deterioration has progressed, as in conditions 3 and 4,
the average hazard rates of the Truncated DB and Censored DB are larger than with a hidden Markov model, and the dete-
rioration speed is faster. Fig. 3b shows performance curves made with the average hazard rates. As can be analogized from
the comparison of the average hazard rates, using either the Truncated DB or Censored DB comes with the risk of a deteri-
oration speed too slow with condition 1, and too fast with conditions 3 and 4, compared to the estimation of a hidden Mar-
kov model. This shows that with samples in which posterior condition improves compared to prior condition, it is highly
possible that the deterioration has not progressed much from the true prior condition measurement to the true posterior
condition measurement. Therefore, when using the Truncated DB, samples in which deterioration between the two measure-
ment times progressed slowly might have been deleted from the database. On the other hand, with the Censored DB, because

Table 6
Comparison of truncated database (DB) and censored database.
Condition states Truncated DB Censored DB
Constant Traffic amount Constant Traffic amount
Bin Biz Bin Biz
1 0.247 0.325 0.214 0.362
(0.238, 0.256) (0.267,0.378) (0.205, 0.224) (0.313,0.421)
1.949 1.646 1.538 0.060
2 0.046 0.164 0.037 0.191
(0.043, 0.047) (0.148,0.178) (0.033, 0.038) (0.173,0.215)
1.435 1.903 1.864 0.584
3 0.139 - 0.127 -
(0.131,0.148) - (0.120, 0.134) -
0.232 - 0.020 -
4 0.163 - 0.131 -
(0.150, 0.183) - (0.118,0.143) -
0.409 - 0.117 -

Notes: For each condition, the first row shows the expected value of the parameter sample, the second row shows the minimum and maximum of the
parameter estimation with 95% credibility and the third row shows Geweke statistics (z-score). For the Truncated DB and the Censored DB, the estimated
results were obtained with a multi-state Markov model.
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Table 7
Comparison of life expectancy between truncated DB and censored DB.
Condition states Truncated DB E[0;] Censored DB E[0;]
1 0311 0.286
2 0.079 0.075
3 0.139 0.127
4 0.163 0.131

the posterior condition has been matched with the prior condition, (artificial) data with the assumption that deterioration
has not progressed have increased; thus, if the prior condition is good, we might assess the deterioration speed as too slow.
However, at least with the applied case, regarding the performance curves up to condition 3, there is no great difference be-
tween the performance curves estimated with the Truncated DB and Censored DB, and the performance curve created with
the consideration of selection biases.

Regarding the stage where deterioration has progressed, the estimation of deterioration speed is significantly fast. How-
ever, at the stage of progressed deterioration, bias from sample shortage due to road paving maintenance occurs, and there
might be a problem with the accuracy of the estimation of the performance curve. With the practical application of road
deterioration prediction, the existence of selection biases in the road condition inspection results has already been pointed
out. With deterioration prediction, a Truncated DB is created without the data in which the condition improved between two
measurement times, and a performance curve is created from this. The applied case in this report shows that there is no great
practical obstacle in using a truncated DB to estimate a multi-stage exponential Markov model and performance curve, if the
condition is at value 3 and rutting is relatively mild. However, this is true for the applied case in this study, and it is necessary
to make further efforts to increase experiential knowledge regarding the influence of selection biases on road deterioration
prediction.

6. Conclusion

In this paper, we have proposed an innovative analytical methodology to forecast the deterioration process of infrastruc-
ture through a hidden Markov model. In the model, selection biases are considered as random variables. Selection biases are
eliminated through the assumption of prior and posterior distribution in Bayesian estimation. Furthermore, Markov Chain
Monte Carlo simulation is introduced to generate a random sampling population in Bayesian estimation algorithm.

We have presented an empirical study on the Japanese national road system. Estimation results reveal the fact that selec-
tion biases have existed in the monitoring data, particularly concerning condition states 3 and 4.

We further point out the influence of selection bias on deterioration forecasting by comparing the estimation results of
multi-stage exponential Markov model of Tsuda et al. (2006b) and the proposed hidden Markov model.

However, we have not discussed several points which may serve as topics for extending this study in the future:

e While the present empirical study is carried out on the road system, this model can be applied to various types of infra-
structure. Depending on the structural characteristics and prior knowledge of each infrastructure system, selection biases
can be considered not as a random variable but also as in the form of a linear function.

e The model can be extended to address the unobservable heterogeneity factor if the hazard rate is considered in the form
of a mixture model. The mixture model can be useful in tackling the effects of various factors on measurement errors and
selection biases.

e The specification of the probability mass function fi(-) in Eq. (20) can be extended to cover two tails distribution. In
another words, we can assume selection bias to distribute on both sides of observable values. However, in order to imple-
ment such assumption, we need to come up with analytical solution for the matter called “identification problem”, which
has been pointed out in econometric research (Kumbhakar and Lovell, 2000).

o Since the estimation results reveal a high risk of having selection biases with condition states 3 and 4 in the monitoring
and inspection of road systems, it is suggested that future research should focus on finding the reasons causing selection
biases in these condition states.
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