
This article was downloaded by: [ETH Zurich]
On: 16 April 2015, At: 02:23
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Click for updates

Structure and Infrastructure Engineering:
Maintenance, Management, Life-Cycle Design and
Performance
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/nsie20

Optimal intervention strategies for multiple objects
affected by manifest and latent deterioration
processes
Nam Lethanha, Bryan T. Adeya & Dilum N. Fernandob

a Institute of Construction and Infrastructure Management, Swiss Federal Institute of
Technology (ETHZ), Zurich8093, Switzerland
b School of Civil Engineering, The University of Queensland, Brisbane, Australia,
Published online: 21 Mar 2014.

To cite this article: Nam Lethanh, Bryan T. Adey & Dilum N. Fernando (2015) Optimal intervention strategies for multiple
objects affected by manifest and latent deterioration processes, Structure and Infrastructure Engineering: Maintenance,
Management, Life-Cycle Design and Performance, 11:3, 389-401, DOI: 10.1080/15732479.2014.889178

To link to this article:  http://dx.doi.org/10.1080/15732479.2014.889178

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://crossmark.crossref.org/dialog/?doi=10.1080/15732479.2014.889178&domain=pdf&date_stamp=2014-03-21
http://www.tandfonline.com/loi/nsie20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/15732479.2014.889178
http://dx.doi.org/10.1080/15732479.2014.889178
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Optimal intervention strategies for multiple objects affected by manifest
and latent deterioration processes

Nam Lethanha*, Bryan T. Adeya1 and Dilum N. Fernandob2

aInstitute of Construction and Infrastructure Management, Swiss Federal Institute of Technology (ETHZ), Zurich 8093, Switzerland;
bSchool of Civil Engineering, The University of Queensland, Brisbane, Australia,

(Received 5 February 2013; final version received 17 November 2013; accepted 29 December 2013; published online 21 March 2014)

In the existing infrastructure management systems, optimal interventions strategies (OISs) are determined for objects that
deteriorate gradually (manifest deterioration process, MDPs), under the assumption that with appropriate inspection and
intervention strategies the probability of failure of object can be neglected. Objects that deteriorate suddenly (latent
deterioration process, LDPs), for example, due to scouring during a flood or earth movements during an earthquake are not
considered. The determination of OISs for an object that deteriorates due to both MDPs and LDPs requires the consideration
of both. The latter, however, means that the probability of failure of the object must be considered. In this article, a Markov
model is presented that can be used to determine OISs for multiple objects of multiple types affected by uncorrelated MDPs
and LDPs. The model is an extension of the model proposed byMayet andMadanat (Incorporation of seismic considerations
in bridge management systems. Computer-Aided Civil and Infrastructure Engineering, 17:185–193, 2002). In the model, a
set of condition states (CSs) is used to describe the condition of objects of each type, where each set is composed of non-
failure CSs and failure CSs. The probabilities of going from each non-failure CS to each failure CS are estimated using
normalised fragility curves, and the probabilities of going from each non-failure CS to each non-failure CS are initially
estimated using the Markov deterioration prediction model of Kobayashi, Kaito, and Lethanh (A Bayesian estimation
method to improve deterioration prediction for infrastructure system with Markov chain model. International Journal of
Architecture, Engineering and Construction, 1:1–13, 2012a) and later adjusted taking into consideration the probabilities of
entering the failure CSs. The use of the model is demonstrated using a road link comprising one road section and one bridge.

Keywords: Markov model; bridge management; road management; latent deterioration process; hazard risks; optimisation

1. Introduction

One of the main tasks of infrastructure managers is to

determine the optimal intervention strategies (OISs) to

follow for their infrastructure. In order to do so, they rely on

the use of optimisation models, which can be either

deterministic or probabilistic. In deterministic models, it is

often assumed that initiation and development of indicators

(e.g. roughness, crack, bearing capacity) follow determi-

nistic empirical functions, which take continuous forms

(Fwa, Chan, & Hoque, 2000; Ouyang, 2007; Sathaye &

Madanat, 2011). One limitation of the use of deterministic

models is that it does not consider the uncertainties (e.g. the

probabilistic changes in the deterioration, changes in

demand of usages, interventions). This limitation can be

overcome by using probabilistic models, although discrete

condition states (CSs) are normally used rather than

continuous function in order tomake the problems tractable

(Madanat, 1993; Madanat, Mishalani, & Ibrahim, 1995;

Tsuda, Kaito, Aoki, & Kobayashi, 2006).

In the field of infrastructure management, Markov

models are one of the most widely used probabilistic

models (Golabi & Shepard, 1997; Kobayashi, Kaito, &

Lethanh, 2012b; Thompson, Small, Johnson, & Marshall,

1998). In discrete time Markov chain, the deterioration of

an object is modelled by determining the probability that

the object will pass from one discrete CS to another in a

fixed period of time, where the CSs are defined using

values of performance indicators (e.g. visual indicators of

corrosion, roughness and cracking of the road surface)

(Kuhn, 2010; Kobayashi et al. 2012a, 2012b).

An advantage of Markov models is that, once discrete

CSs are defined, they can be used to take into

consideration the uncertainty of an object being in each

of these CSs in the future. Markov models are currently

used, however, to model only the manifest deterioration

processes (MDPs)3 (Kobayashi et al., 2012b; Lethanh,

2009; Tsuda et al., 2006). They are not used to model

latent deterioration processes (LDPs).4

Examples of using Markov models based on the MDP

to determine the OISs for infrastructure objects can be

with the existing bridge management systems (BMSs)

such as the PONTIS (American Association of State

q 2014 Taylor & Francis
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Highway and Transportation Officials [AASHTO], 2004;

Fruguglietti, Pasqualato, & Spallarossa, 2012; Golabi &

Shepard, 1997) and the KUBA-MS (Hajdin, 2006).

Technical guidelines for using the Markov models and

national specifications with regard to monitoring and

quantification of the status and impacts associated with

each CS as well as agency rules in the Markov models

have been well established and used for managing the

deteriorating civil structures (Hajdin, 2003, 2006; Robert,

Marshall, Lin, Shepard, & Aldayuz, 2002).

However, as the existing infrastructure management

systems (IMSs) using Markov models do not incorporate

the LDP, the intervention strategies that are derived from

the models might not be the optimal strategies, especially

for civil structures located in regions with high probability

of hazard occurrences. It is a solid piece of experiential

knowledge thatwhen a bridge, as an example, is in goodCS,

the failure probability due to hazard occurrence is less than

that when it is in worst CS (Korup & Clague, 2009;

Schubert, Faber, Jacquemoud, & Straub, 2010). In other

words, a bridge with a proper preventive maintenance and

repair will have less chance of collapsing than a bridge with

no or poor maintenance and repair. Thus, in any case, it

should constantly be remembered that the determination of

the OISs should depend on both the MDPs and the LDPs.

This phenomenon has actually been demonstrated in

numerous literatures, particularly with the development of

block- and age-replacement models used in the field of

facilities management (Berg & Epstein, 1978; Chen &

Savits, 1992; Gertsbakh, 1997, 2000; Kaio & Osaki, 1984).

As a result of the increasing need of our society to have

proactive responses to natural disasters, assessing and

managing hazard risks to civil infrastructures and methods

to incorporate hazards into existing IMSs have become a

high-profile matter in the agenda of infrastructure

managers (Biringer, Vugrin, & Warren, 2013; Taylor,

Werner, & Graf, 2006; Thompson, Rogers, & Thomas,

2012). Significant works have been archived, especially in

the application of probabilistic methods to model the

occurrences of hazard events and the expected impacts

incurred (Castelli & Scavia, 2008; Faber & Stewart, 2003;

Korup & Clague, 2009; Schubert et al. 2010).

Models used to quantify the occurrence of natural

hazards or disaster can be assumed to follow a certain

probabilistic distribution. One of the most widely used

probabilistic distributions is Poisson distribution for

quantifying the occurrence of extreme events such as

earthquake based on historical record as well as the

seismic force (Korup & Clague, 2009; Zucchini &

MacDonald, 2009). Not limited to earthquake occurrence,

other methods such as the use of GIS-tool (Barufı̈ni, 2010)

or Bayesian network modelling (Bayraktarli & Faber,

2011; Graf, Nishijima, & Faber, 2009) have also been

proposed to perform risk assessment and calculate the

probabilistic occurrence of other natural hazards such as

floods, avalanches, rockfalls and landslides along the

infrastructure network.

After acquiring the probabilistic occurrence of natural

hazards, the next step is to use it to estimate the probability

of failure of the civil structures. To date, one of the popular

methodologies that is used to estimate the failure

probability of infrastructure objects due to hazard risks is

the method of using fragility curves (Choi, DesRoches, &

Nielson, 2004; Graf et al. 2009; Karim&Yamazaki, 2001).

To the best of our knowledge, despite the rapid

development and improvement in the area of structural

analysis associated with natural hazard risks using the

fragility curves, application of using fragility curve is more

or less in the design stage of civil structures, but not in the

operational stage, where preventive and corrective inter-

ventions need to be executed at some point in time to reduce

the negative impacts of both the MDPs and the LDPs.

Mayet and Madanat (2002) were the first to attempt the

consideration of both MDPs and LDPs simultaneously in

determining the OIS for objects of one type, for example

bridges, using the Markov model. The LDPs were

incorporated into the Markov model by adding a CS to

represent the failure of the object. Fragility curves,

together with the hazard risk curves, were used to estimate

the failure probability of the object when it is in the failure

state. Fragility curves, together with hazard curves, were

used to estimate the probability of the object entering the

failure CS from all other CSs.

In this article, the model proposed by Mayet and

Madanat (2002) is extended and generalised to cover

multiple objects of different types, instead of multiple

objects of one type. In order to do this, a set of CSs is used

to describe the condition of objects of each type, where

each set is composed of the following:

(1) Non-failure CSs: The CSs used to describe the

condition of the object when the object is

considered to provide an adequate level of service,

that is not failed. These CSs can occur only due to

MDPs (as described by Mayet and Madanat

(2002)).

(2) Failure CSs: The CSs used to describe the

condition of the object when the object is

considered to provide an inadequate level of

service, that is failed. It is considered that these

CSs can occur only due to LDPs (multiple-failure

CSs are used instead of single-failure CS as

described by Mayet and Madanat (2002)).

The probabilities of passing from each non-failure CS to

each failure CS are estimated using normalised fragility

curves, and the probabilities of passing from each non-

failure CS to each non-failure CS are initially estimated

using the Markov model of Tsuda et al. (2006) and

Kobayashi et al. (2012a) and later adjusted taking into

consideration the probabilities of entering the failure CSs.
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As Mayet and Madanat (2002) only had one-failure CS, it

was possible for them to use point estimates of the

probability of failure from the fragility curves to estimate

the transition probabilities, instead of intervals.

The model allows the consideration of multiple objects

with different range of discrete CSs, multiple states of

failures and also the imposition of a global budget

constraint, that is not per object type but for all object

types simultaneously, in the determination of the OISs.

This budget constraint is assumed to be on average over a

long period.

In existing BMSs, such global constraints are only

introduced in the construction of work programs, that is

the exact interventions to be executed over a normally

relatively short period of time. These work programs are

often constructed using incremental cost–benefit analysis

(Farid, Johnston, Rihani, & Chen, 1994) or by using the

knapsack algorithm to determine the interventions that can

be executed in a specific time period to maximise benefit

(Holst, 2006).

The remainder of the article is structured as follows.

In Section 2, a model normally used to predict the future

condition of objects due to MDPs is explained. In Section

3, a model to be used to predict the future condition of

objects due to both MDPs and LDPs is proposed. The

estimation of probability of entering failure CSs using

fragility curves and hazard curves is explained. In Section

4, a linear optimisation model for the determination of

OISs of a road link composed of objects of multiple

types is explained. In Section 5, the use of the proposed

model is demonstrated using a road link composed of a

road section and a bridge, each of which is affected by

an MDP and an LDP. Section 6 describes the conclu-

sions of the article and suggested directions for future

research.

2. A model for manifest processes

When objects are affected only by MDPs, Markov models,

as they are currently used in BMSs, can be used to predict

deterioration. In these models, it is assumed that an object

passes from one discrete CS to another with a certain

probability in each unit of time (Hajdin, 2006). The

probability of passing from one non-failure CS to another

in each unit of time, that is a transition probability (t.p.), is

determined using past inspection data and can be estimated

as described in Tsuda et al. (2006) and Kobayashi et al.

(2012a).

The determination of transition probabilities can be

explained with reference to Figure 1, where time is

represented by t, the discrete CSs by iði ¼ 1; . . . ; IÞ, with
i ¼ 1 as initial CS (when structure is new) and I as

absorbing CS, tA and tB represents inspection times, and ti
represents any arbitrary time between inspections and Z

represents the length of time between two inspections.

With the data collected at inspection times tA and tB,
the transition probabilities can be described as follows:

Prob½hðtBÞ ¼ jj½hðtAÞ ¼ i� ¼ pij; ð1Þ
where hðtAÞ and hðtBÞ are representations of the CSs

observed at time tA and tB, respectively. In cardinal form,

the transition probabilities can be written as

pij ¼

p11 p12 · · · p1I

0 p22 · · · p2I

..

. ..
. . .

. ..
.

0 0 · · · 1

2
6666664

3
7777775
: ð2Þ

If the CS of the object changes from i to iþ 1 at time ti
(timing yC), then the length of time in CS i can be

expressed by

zi ¼ ti 2 ti21 ¼ yC; ð3Þ
where zi is a random variable, valid on a domain of ½0;1�
with the pdf f iðziÞ, and the cdf FiðzÞ. In this case,

FiðyiÞ ¼
ðyi
0

f iðziÞdzi; ð4Þ

where FiðyiÞ represents the cumulative probability of the

change from CS i to CS iþ 1 in the period from time

yi ¼ 0 (time ti21), at which the CS has become CS i, to yi
(time ti þ yi). Accordingly, ~FiðyiÞ is the probability that

the object remains in CS i from time yi ¼ 0 to yi [ ½0;1�.
It can be expressed using the cdf of the change from CS i to

CS iþ 1 up to time yi:

Prob½zi $ yi� ¼ ~FiðyiÞ ¼ 12 FiðyiÞ: ð5Þ

The conditional probability of the event that the object

remains in CS i until yi and transitions to CS iþ 1 in the

InspectionInspection
Condition
states

Figure 1. Illustration of the relationship between actual
transitions between CSs and observed transitions between CSs
(Adopted from Lethanh (2009)).
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period ½yi; yi þ DyiÞ is given by

liðyiÞDyi ¼ f iðyiÞDyi
~FiðyiÞ ; ð6Þ

where the instantaneous hazard rate liðyiÞ of the change in
CS of the object from CS i to CS iþ 1 at yi is called a

hazard function.

If the hazard function is independent of the value of

yi, then the hazard rate ui ¼ liðyiÞ is used. The

probability that the object remains in CS i up to yi,

with ui, is given by

~FiðyiÞ ¼ exp 2

ðyi
0

liðuÞdu
2
4

3
5 ¼ exp ð2uiyiÞ: ð7Þ

This survival probability function is identical to the

equation required to estimate the t.p. pii when the time

interval ½0; yiÞ equals Z. By defining the subsequent

conditional probability of going from CS i to j, with

respect to Z, a general mathematical formula for

estimating pij can be obtained:

pijðzÞ ¼ Prob½hðtBÞ ¼ jjhðtAÞ ¼ i�

¼
Xj
k¼i

Yk21

m¼i

um
um 2 uk

Yj21

m¼k

um
umþ1 2 uk

exp ð2ukzÞ;
ð8Þ

where i, j, k and m are running index of CS.

The hazard rate is often a function of characteristic

variables such as traffic volume, thickness of pavement,

bridge slab area and ambient temperature (Lethanh, 2009;

Tsuda et al., 2006). In addition, discrete CSs can be

defined or converted from a certain range in the value of

indicators (e.g. roughness value used in pavement

management system or percentage of crack of concrete

deck of a bridge).

3. A model for manifest and latent processes

3.1. Model description

The model of MDPs and LDPs is similar to that for

MDPs. The extension of the model of MDPs to include

LDPs, however, requires the consideration of failure CSs,

that is CSs in which inadequate levels of service are

provided, as they have a non-negligible probability of

occurrence due to, for example, the ground shaking

during an earthquake. These failure CSs, l ¼ ð1; . . . ; LÞ,
are added to the non-failure CSs, i ¼ ð1; . . . ; IÞ (Equation

(2)), as shown in

Q ¼

p11 p12 · · · p1I e
p
11 e

p
12 · · · e

p
1L

0 p22 · · · p2I e
p
21 e

p
22 · · · e

p
2L

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 · · · pII e
p
I1 e

p
I2 · · · e

p
IL

0 0 · · · 0 e11 e12 · · · e1L

0 0 · · · 0 0 e22 · · · e2L

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 · · · 0 0 0 · · · 1

; ð9Þ

where p represents the t.p.s between the non-failure CSs,

ep represents the t.p.s from the non-failure CSs to the

failure CSs and e represents the t.p.s between the failure

CSs.

The summation of the t.p.s between all CSs, that is

non-failure and failure CSs, equals 1.

XI
j¼1

pij þ
XL
l¼1

e
p
il ¼ 1: ð10Þ

The estimation of the t.p.s when objects are affected by

both MDPs and LDPs is more difficult than when they are

affected by only MDPs due to lack of data, since the failure

CSs happen so infrequently. The estimation can, however,

still be carried out by adjusting the values of pij based on

the values of e
p
il as explained in Section 3.2.

3.2. Steps to estimate transition probabilities

The three steps proposed to estimate the t.p.s in Q

(Equation (9)) are as follows:

. Step 1: Estimate pij based on past data (Section 2);

. Step 2: Estimate e
p
ij and eij taking into consideration

the probable damage to an object when subjected to

hazards of different magnitudes [using condition-

based fragility curves (Section 3.4)] and the

probability of occurrence of each magnitude of the

hazard (using hazard curves).
. Step 3: Adjust pij proportionally so as to satisfy the

condition in Equation (10).

3.3. Estimate transition probabilities due to MDPs
alone

The t.p.s due to MDPs are first estimated as is normally

explained in Tsuda et al. (2006), Lethanh (2009) and

Kobayashi et al. (2012a). As this is a well-established

process, this step is not explained here.
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3.4. Estimate transition probabilities due to LDPs alone

The probabilities of entering failure CSs (e
p
ij and eij) are

estimated using fragility curves and hazard curves; both

concepts that have been used extensively in the field of

structural engineering and hazard risk modelling (Choi

et al., 2004; Graf et al., 2009; Karim & Yamazaki, 2001;

Mayet & Madanat, 2002). A fragility curve gives the

probability of an object exceeding a failure CSs when

subjected to a hazard of a given intensities. An example is

given for the rockfall hazard in Figure 2 and more can be

found in Karim and Yamazaki (2001), Choi et al. (2004)

and Schultz, Gouldby, Simm, and Wibowo (2010).

The fragility curves shown in Figure 2 represent the

probability (vertical axis) of one level of bridge deck

failure, failure CSs taking into consideration the initial

condition of the bridge deck, that is the non-failure CS of

the bridge deck (i ¼ 1, 2, and 3) prior to hazard occurrence

given the volume of rockfall that comes in contact with the

deck. As can be observed in the figure, if 15 m3 of rock

comes in contact with a bridge deck in CS1, there is a 0.085

probability (point A) that the bridge deck would fail. It can

also be observed that the higher the initial CS the higher the

probability of bridge deck failure(e.g. when the bridge deck

is initially in CS2 and CS3 the probability that the bridge

deck would fail is 0.224 and 0.608, respectively).

With an estimation of the volume of rock that will

come in contact with the bridge deck, it is possible to

estimate the probability of each failure CS from each non-

failure CS (Equation (11)). Fragility curves are object

dependent.

Vl
s;i ¼ prob½CS . l s; ij �

; ð11Þ

where the probability Vl
s;i of exceeding CS l is conditional

on the intensity s of the hazard and the CS i of the object,

immediately prior to hazard occurrence.

The probability of the occurrence of a hazard with an

intensity exceeding a certain level (e.g. rockfall volume

greater than 15 m3), which is a function of the intensity s

and time t, is defined using a hazard curve (Equation (12)).

Hazard curves are location dependent.

HsðtÞ ¼ Prob½ intensity . s; ð0; tÞ�: ð12Þ

From Equations (11) and (12), the probability of

occurrence of each level of object failure within a period

of time t, that is e or e
p
il in Equation (9) can be estimated.

e
p
il; e

� � ¼ prob½CS ¼ l s; i; tj �

¼

Ð t
0
HsðtÞ�dVL21

s;i l ¼ LÐ t
s
HsðtÞ�dVl21

s;i 2
Ð t
0
HsðtÞ�dVl

s;i l # L2 1
;

8><
>:

ð13Þ

where L is the highest failure CS.

The current formulation is carried out assuming that at

most one hazard event can occur on the smallest time

interval investigated, for example only one rockfall can

occur per year in the 50-year investigated time period. It is

assumed that the probability of multiple hazards occurring

in one time period is negligible; something that is

defendable with relatively well-constructed infrastructure

and short analysis time periods.

3.5. Adjust the transition probabilities due to MDPs

Once the t.p.s due to LDPs are determined, the t.p.s due to

MDPs, pij, are adjusted (Equation (10)). This is done by

multiplying the pij estimated in Equation (9) with a

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y 

of
 fa

ilu
re

 C
S

 l

0 5 10 15 20 25 30

Rock fall volume(m3)

i = 1
i = 2
i = 3

A (0.085)

B (0.224)

C (0.608)

Figure 2. Fragility curves for a bridge deck subjected to rockfalls.
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proportional factor Di, as

Di ¼
 
12

XL
l¼1

e
p
il

!
: ð14Þ

4. Optimisation model

The model used to determine the OISs is a linear

optimisation model. It is an extension of the model

proposed by Mayet and Madanat (2002) for determining

the OIS for a single bridge affected by earthquakes and

similar to those used in many existing BMSs (ASTRA,

2010; FHWA, 2002; Fruguglietti et al., 2012). Adaptations

have been made so that multiple objects of multiple object

types can be considered, that is different objects whose

deterioration is modelled using different CS definitions

and different t.p.s. The model is as follows:

Objective function:

MIN
XN
n¼1

XAn

an¼1

XInþLn

in

pn;an;in�Sn;an;in ; ð15Þ

where n ¼ ð1; . . . ;NÞ represents the objects; an ¼
ð1; . . . ;AnÞ represents the interventions on object n; in ¼
ð1; . . . ; In þ LnÞ are indices of object n, if in ¼ ð1; . . . ; InÞ
then in represents the non-failure CSs, if in ¼ ðIn þ
1; . . . ; In þ LnÞ then in represents the failure CS; pn;an;in

represents the steady-state probability of object n, that is if

an IS is consistently followed, the probability of object n

being in CS in in one time interval at an infinite point of

time in the future, and intervention an being executed;

Sn;an;in represents the total impacts incurred due to the

execution of intervention an on object n when it is in CS in.

Subject to the following constraints:

Sn;an;in ¼
XS
s¼1

csn;an;in ; ð16Þ

where s is an index of stakeholders (e.g. owner, users,

public,), csn;an;in is the impact incurred by stakeholder s

when intervention an is executed on object n when it is in

state in. XN
n¼1

XA
an¼1

XIn
in¼1

pn;an;in c
s
n;an;in

# Bs; ð17Þ

Bs is the maximum allowable impact to be incurred by

stakeholder s (e.g. the limit of the amount of resources that

can be used for the execution of interventions).

The steady-state probability of object n is estimated as

pn;an;in $ 0; ;n;;an;;in;PAn

an¼1

PInþLn
in¼1 pn;an;in�Qn;an;in;jn ¼

PAn

an¼1 pn;an;jn ;n;;jn
;

8<
:

ð18Þ
where Qn;an;in;jn is the t.p. matrix (from i to j) when the set

of interventions an in the appropriate CSs are executed.

XAn

an¼1

XInþLn

in¼1

pn;an;in ¼ 1; ;n: ð19Þ

This constraint ensures that only one intervention is

executed per object per time interval.

5. Example

5.1. Problem description

In this example, the OIS is determined for a road link

comprising a road section and a bridge. Three budget

scenarios are investigated

. Scenario 1: Sufficient financial resources are

available to execute all interventions, when required,

on objects that are in either non-failure or failureCSs.
. Scenarios 2 and 3: Sufficient financial resources are

not available to execute all interventions, when

required, on objects that are in non-failure CSs, but

sufficient financial resources are available to execute

all interventions,when required, on objects that are in

failure CSs.

The road section and the bridge are both affected by

uncorrelated MDPs and LDPs. The CSs used to classify

the condition of the road section and the bridge are given

in Tables 1 and 2, respectively.

The effectiveness of the interventions executedwhen the

road section and the bridge are in non-failure CSs is given in

Tables 3 and 4. For example, if an intervention is executed

when a road section at time t is in CS i ¼ 2, there is a

probability of 0.1 that the road sectionwill be inCS i ¼ 1 and

Table 1. Road section CSs.

Level of service

CS type Number Description CSs Definition

Non-failure 0 Full service i ¼ 1 New, no crack, no potholes
i ¼ 2 ,10% crack, no potholes
i ¼ 3 10–40% crack, potholes occur
i ¼ 4 Badly deteriorated, .40% crack, potholes

Failure 1 Reduced service l ¼ 1 Up to half of the road width is unusable and traffic must be restricted to one lane
2 No service l ¼ 2 The complete road is blocked
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a probability of 0.9 that it will remain in CS i ¼ 2 at time

t þ 1. The effectiveness of interventions, executed when

objects are in failure CSs l ¼ 1 and 2 are assumed to restore

the object with a probability of 1 to CS i ¼ 1. The impacts

incurred by the owner and other stakeholders due to the

execution of interventions are given in Tables 5 and 6. For

example, a renovation intervention executed when a road

section is in CS i ¼ 1 will result in impacts to the owner

worth 35 mu and impacts to others worth 60 mu.

5.2. Transition probabilities

5.2.1. Step 1

The t.p.s for each object were estimated using the Equation

(8), assuming that the objects were affected only by MDP

(Table 7). The resulting distributions of CSs over 50 years, if

no interventions are executed, are shown in Figure 3(a),(b).

5.2.2. Step 2

The fragility curves for eachobject (Figure 4)were estimated

based on the research of Schubert et al. (2010), where the

rockfall intensity was estimated using Equation (12).

Hsðt ¼ 1Þ ¼ a�S2g; ð20Þ
where a and g are the parameters associated with the local

condition of the cliff fromwhich the rockfall may occur. The

values of the parameters used are given in Table 8.

The fragility curves were used to estimate the t.p.s of

going from each non-failure CS to each failure CS, as well

Table 2. CS definitions for bridges.

Level of service

CS type Number Description CS Definition

Non-failure 0 Full service i ¼ 1 Deck is new or near new, almost no sign of deterioration
i ¼ 2 Leakage is occurring over ,10% of the deck surface area
i ¼ 3 Leakage is occurring over ,25% of the deck surface area
i ¼ 4 Leakage is occurring over $25% of the deck surface area,

some spalling is occurring, substantial efflorescence
i ¼ 5 Heavy spalling, heavy efflorescence, deck saturated to a

point that concrete is rubble
Failure 1 Reduced service l ¼ 1 There are no visual indications of

a reduction in the load-carrying capacity of the bridge but there is
material on the bridge that restricts use to one lane

2 No service l ¼ 2 The bridge is not useable

Table 3. Effectiveness of road section interventions.

Maintenance interventions Renovation interventions

Year (t þ 1) Year (t þ 1)

CS i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 CS i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Year (t)
i ¼ 1 1 0 0 0 i ¼ 1 1 0 0 0
i ¼ 2 0.1 0.9 0 0 i ¼ 2 1 0 0 0
i ¼ 3 0 0.2 0.8 0 i ¼ 3 1 0 0 0
i ¼ 4 0 0 0.49 0.51 i ¼ 4 1 0 0 0

Table 4. Effectiveness of bridge interventions.

Maintenance interventions Rehabilitation interventions Renovation interventions

Year (t þ 1) Year (t þ 1) Year (t þ 1)

CSs i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 CSs i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 CSs i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5

Year (t)
i ¼ 1 1 0 0 0 0 i ¼ 1 1 0 0 0 0 i ¼ 1 1 0 0 0 0
i ¼ 2 0.2 0.8 0 0 0 i ¼ 2 0.3 0.7 0 0 0 i ¼ 2 1 0 0 0 0
i ¼ 3 0 0.3 0.7 0 0 i ¼ 3 0 0.4 0.6 0 0 i ¼ 3 1 0 0 0 0
i ¼ 4 0 0 0.4 0.6 0 i ¼ 4 0 0 0.5 0.5 0 i ¼ 4 1 0 0 0 0
i ¼ 5 0 0 0 0.5 0.5 i ¼ 5 0 0 0 0.6 0.4 i ¼ 5 1 0 0 0 0
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Table 5. Impacts incurred during the execution of road interventions.

Owner Other stakeholders

CSs Do nothing
Maintenance
intervention

Renovation
intervention Do nothing

Maintenance
intervention

Renovation
intervention

i ¼ 1 0 4 35 0 0 60
i ¼ 2 0 4 35 4 4 60
i ¼ 3 0 4 35 6 6 60
i ¼ 4 0 4 35 8 8 60
l ¼ 1 75 75 75 125 125 125
l ¼ 2 100 100 100 150 150 150

Table 6. Impacts incurred during the execution of bridge interventions.

Owner Other stakeholders

CSs
Do

nothing
Maintenance
intervention

Rehabilitation
intervention

Renovation
intervention

Do
nothing

Maintenance
intervention

Rehabilitation
intervention

Renovation
intervention

i ¼ 1 0 6 7 68 0 0 0 97
i ¼ 2 0 6 7 68 8 8 8 97
i ¼ 3 0 6 7 68 10 10 10 97
i ¼ 4 0 6 7 68 12 12 12 97
i ¼ 5 0 6 7 68 15 15 15 97
l ¼ 1 108 108 108 108 162 162 162 162
l ¼ 2 138 138 138 138 210 210 210 210

Table 7. Transition probabilities assuming objects affected only by MDPs.

(a) Road section (b) Bridge

Year (t þ 1) Year (t þ 1)

CSs i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 CSs i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5

Year (t)
i ¼ 1 0.9231 0.0706 0.0057 0.0006 i ¼ 1 0.9418 0.0557 0.0024 0.0001 0.0000
i ¼ 2 0 0.8437 0.1345 0.0218 i ¼ 2 0 0.9139 0.0783 0.0072 0.0006
i ¼ 3 0 0 0.7408 0.2592 i ¼ 3 0 0 0.8270 0.1525 0.0205
i ¼ 4 0 0 0 1 i ¼ 4 0 0 0 0.7788 0.2212

i ¼ 5 0 0 0 0 1
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Figure 3. CSs distribution.
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as between failure CSs. The estimated t.p.s are given in the

last two columns of Tables 9 and 10 for road section and

bridge respectively. Tables 9 and 10 are the deterioration

matrices taking into consideration both MDPs and LDPs.

5.2.3. Step 3

The t.p.s between non-failure CSs are proportionally

adjusted by multiplying its original values with a factor

defined in Equation (14). By doing so, the condition of

Equation (10) is satisfied. The modified t.p.s are given in

the first four and five columns in Tables 9 and 10,

respectively.

5.3. Results

The t.p.s estimated as described earlier were then used as

input for the optimisation model, programmed in AMPL.

The steady-state probabilities pn;an;in for the three

scenarios were estimated. In Scenarios 2 and 3, the budget

was 8.5 and 8.0 mu, respectively, whereas in Scenario 1

the budget was unlimited as shown in Tables 11–16. The

budget constraints are assumed to limit the average

expenditure per year over a long period of time.

. Under Scenario 1, it is possible to execute the

theoretically optimal interventions when the objects

are in the non-failure CSs. The do-nothing

intervention will be executed on the road section

when it is in non-failure CSs 1 and 2, which will

occur with probabilities of 0.68256 and 0.23885,

respectively. Renovation interventions will be

executed when the road section is in non-failure

CSs 3 and 4, which will occur with probabilities of

0.03443 and 0.00537, respectively. The do-nothing

intervention will be executed on the bridge when it

is in non-failure CSs 1, 2 and 3, which will occur

with probabilities of 0.55998, 0.27758 and 0.11565,

respectively. Renovation interventions will be

executed when the bridge is in non-failure CSs 4

and 5. The total average value of impacts under

this scenario is 27.14 mu, in which 12.56 mu is

due to the execution of interventions on the road

section and 14.58 mu is due to the execution of

interventions on the bridge.
. Under Scenario 2, it is not possible to always

execute the theoretically optimal interventions when

the objects are in the non-failure CSs. The do-
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Figure 4. Fragility curve for objects subjected to rockfall hazards.

Table 8. Parameter values.

to CS5 (l ¼ 1) to CS6 (l ¼ 2)

CSs a g a g

Road
i ¼ 1 0.40 2.80 0.20 2.80
i ¼ 2 0.45 2.70 0.22 2.70
i ¼ 3 0.50 2.50 0.28 2.50
i ¼ 4 0.60 2.40 0.35 2.40
CS5(l ¼ 1) NA NA 0.41 2.20

to CS6 (l ¼ 1) to CS7 (l ¼ 2)

CSs a g a g
Bridge
i ¼ 1 0.30 3.00 0.15 3.00
i ¼ 2 0.30 3.00 0.15 3.00
i ¼ 3 0.30 3.00 0.15 3.00
i ¼ 4 0.45 3.20 0.20 3.20
i ¼ 5 0.60 3.50 0.30 3.50
CS6(l ¼ 1) NA NA 0.42 3.60
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Table 9. Transition probabilities for road sections due to manifest-latent processes.

Year (t þ 1)

CSs i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 l ¼ 1 l ¼ 2

Year (t)
i ¼ 1 0.88818 0.06793 0.00548 0.00058 0.02041 0.01741
i ¼ 2 0 0.80588 0.12847 0.02082 0.02445 0.02038
i ¼ 3 0 0 0.69999 0.24492 0.02555 0.02954
i ¼ 4 0 0 0 0.92976 0.03048 0.03975
l ¼ 1 0 0 0 0 0.94986 0.05014
l ¼ 2 0 0 0 0 0 1

Table 10. Transition probabilities for bridges due to manifest-latent processes.

Year (t þ 1)

CSs i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 l ¼ 1 l ¼ 2

Year (t)
i ¼ 1 0.91787 0.05419 0.00224 0.00019 0.00010 0.01420 0.01120
i ¼ 2 0 0.89068 0.07631 0.00702 0.00058 0.01420 0.01120
i ¼ 3 0 0 0.80599 0.14863 0.01998 0.01420 0.01120
i ¼ 4 0 0 0 0.75015 0.21306 0.02211 0.01468
i ¼ 5 0 0 0 0 0.96321 0.01562 0.02117
l ¼ 1 0 0 0 0 0 0.97012 0.02988
l ¼ 2 0 0 0 0 0 0 1

Table 11. Results of Scenario 1 (road section).

Steady-state probabilities pa,i

Intervention type i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 l ¼ 1 l ¼ 2

Do nothing 0.68256 0.23885 – – – –
Rehabilitation intervention – – – – – –
Renovation intervention – – 0.03443 0.00537 0.02081 0.01798

Table 12. Results of scenario 1 (bridge).

Steady-state probabilities pa,i

Intervention type i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 l ¼ 1 l ¼ 2

Do nothing 0.55998 0.27758 0.11565 – – – –
Maintenance intervention – – – – – – –
Rehabilitation intervention – – – – – – –
Renovation intervention – – – 0.01925 0.00253 0.01400 0.01101

Table 13. Results of scenario 2 (road section).

Steady-state probabilities pa,i

Intervention type i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 l ¼ 1 l ¼ 2

Do nothing 0.61225 0.21425 0.10294 – – –
Rehabilitation intervention – – – – – –
Renovation intervention 0.03002 0.02128 0.01926
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nothing intervention will be executed on the road

section when it is in non-failure CSs 1, 2 and 3,

which will occur with probabilities 0.61225,

0.21425 and 0.10294, respectively. Renovation

interventions will be executed when the road section

is in non-failure CS 4, which will occur with a

probability of 0.03002. The do-nothing intervention

will be executed on the bridge when it is in non-

failure CSs 1–4, which will occur with probabilities

of 0.43433, 0.21529, 0.08970 and 0.05974. When

the bridge is in non-failure CS 5 either a do-nothing

intervention or a renovation intervention will be

executed. This will happen with probabilities of

0.16496 and 0.00862, respectively. The imposition

of the budget constraint has resulted in a change

in the OIS and a change in the probability of being

in each CS. It has also resulted in it not being

possible to always execute the same intervention on

the bridge when it is in a specific non-failure CSs

and indicates that when the bridge is in non-failure

CS 5 an infrastructure manager should approxi-

mately 95% of the time do nothing, and 5% of the

time execute a renovation intervention. The total

expected value of impacts under this scenario is

28.16 mu, in which 12.54 mu is due to the execution

of interventions on the road section and 15.62 mu is

due to execution of interventions on the bridge.
. Under Scenario 3, it is not possible to always

execute the theoretically optimal interventions when

the objects are in the non-failure CSs. The do-

nothing intervention will be executed on the road

when it is in the non-failure CSs 1, 2 and 3, which

will occur with a probability of 0.54901, 0.19212

and 0.09230, respectively. When the road section is

in non-failure CS 4 either a do-nothing intervention

or a renovation intervention will be executed.

This will happen with probabilities of 0.10381 and

0.01963, respectively. The do-nothing intervention

will be executed on the bridge when it is in all non-

failure CSs. The imposition of the budget constraint

has resulted in a change in the OIS and a change in

the probability of being in each CS. It has resulted in

it not being possible to always execute a specific

intervention on the road section when it is in non-

failure CSs and indicates that when the road section

is in non-failure CS 4 an infrastructure manager

should approximately 84% of the time do nothing

and 16% of the time execute a renovation

intervention. It has also resulted in it not being

possible to execute any interventions on the bridge

Table 14. Results of scenario 2 (bridge).

Steady-state probabilities pa,i

Intervention type i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 l ¼ 1 l ¼ 2

Do nothing 0.43433 0.21529 0.08970 0.05974 0.16496 – –
Maintenance intervention – – – – – – –
Rehabilitation intervention – – – – – – –
Renovation intervention – – – – 0.00862 0.01453 0.01283

Table 15. Results of scenario 3 (road section).

Steady-state probabilities pa,i

Intervention type i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 l ¼ 1 l ¼ 2

Do nothing 0.54901 0.19212 0.09230 0.10381 – –
Rehabilitation intervention – – – – – –
Renovation intervention – – – 0.01963 0.02202 0.02111

Table 16. Results of scenario 3 (bridge).

Steady-state probabilities pa,i

Intervention type i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 l ¼ 1 l ¼ 2

Do nothing 0.35197 0.17446 0.07269 0.04842 0.32356 – –
Maintenance intervention – – – – – – –
Rehabilitation intervention – – – – – – –
Renovation intervention – – – – – 0.01463 0.01427
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unless it is in a failure CSs. The total expected value

of impacts under this scenario is 29.29 mu, in which,

12.81 mu is due to the execution of interventions on

road sections and 16.48 mu is due to the execution

of intervention on bridges.

6. Conclusions

In this article, a model to be used to determine OISs for

multiple objects of two types that are affected by

uncorrelated MDPs and LDPs is presented. The model is

an extension of the model proposed byMayet andMadanat

(2002). In the model, a set of CSs is used to describe the

condition of objects of each type is used, where each set is

composed of non-failure CSs, that is where the object

provides an adequate level of service, and failure CSs,

where the object provides an inadequate level of service.

The probabilities of going from each non-failure CSs to

each failure CS are estimated using normalised fragility

curves, and the probabilities of going from each non-

failure CS to each non-failure CSs are initially estimated

using the Markov deterioration prediction model of Tsuda

et al. (2006) and Kobayashi et al. (2012a) and later

adjusted taking into consideration the probabilities of

entering the failure CSs.

The model is demonstrated by determining the OIS

for a road link comprising one road section and one

bridge, affected by both MDPs and LDPs. One weakness

of the model, as with all Markov models that are

currently used in BMSs, is that the determination of the

OIS is based on the steady-state probabilities, that is the

probabilities of being in each CS at an infinite point of

time in the future. This is considerably different than

what happens in reality, when interventions are executed

due the failure of an object. The object will most often be

improved so that it is more resistant to failure than the

initial design.

Another weakness is that the model is currently

focused on objects, such as road sections and bridges,

and not on elements, such as abutments and columns.

This is not entirely compatible with the models used in

existing BMSs which are used to make predictions on the

element level. An adaptation of the presented model to

the element level, however, requires considerable

additional work in the estimation of the t.p.s, in order

to take into consideration the fact that elements that

comprise an object are interconnected, and the prob-

ability of failure of each element cannot be determined

without taking into consideration the probability of

failure of other elements.

Future research topics should include the adaptation of

the model so that it can be used to determine the OISs on

the element level, and the investigation of models that do

not require the determination of the OIS using steady-state

probabilities.

Notes

1. Email: adey@ibi.baug.ethz.ch
2. Email: dilum.fernando@eq.edu.au
3. MDPs are processes whose progression over time is followed

in a way that a condition of the object triggers the execution
of an intervention early enough so that it can be assumed that
the object will never provide an unexpected inadequate level
of service. An example of a typical MDP is chloride-induced
corrosion of reinforced concrete.

4. LDPs are processes whose progression over time is not
followed in a way that a condition of the object triggers the
execution of an intervention early enough so that it can be
assumed that the object will never provide an unexpected
inadequate level of service. An example of a typical LDP is
ground accelerations due to an earthquake. This definition is
different from the ones used in some of the past research
articles in which the word was used to describe Markov
models (Ben-Akiva & Ramaswamy, 1993; Ben-Akiva,
Humplick, Madanat & Ramaswamy, 1993). In these cases, it
was used to mean that the processes could not be modelled
directly. Latent processes are often modelled as stochastic
point processes.
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