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Abstract: The deterioration of a pavement surface can be described in terms of the presence and severity of distinct distresses, like potholes,
cracking, and rutting. Each deterioration process is ordinarily described by a set of pavement indicators (e.g., number of potholes, percentage
of cracks, international roughness index) that are measured during monitoring and inspection activities. Manifestly, there exist statistical
correlations among the deterioration processes. For instance, cracks appearing on a road section may contribute to an increase in pothole
occurrence, and vice versa. In order to mathematically formulate the statistical interdependency among deterioration processes, a Poisson
hidden Markov model is proposed in this paper. The model describes the complex process of pavement deterioration, which includes the
frequent occurrence of local damage (e.g., potholes) as well as the degradation of other pavement indicators (e.g., cracks, roughness). To
model the concurrent frequency of local damage, a stochastic Poisson process is used. At the same time, a Markov chain model is used to
depict the degradation of other pavement indicators. A numerical estimation approach using Bayesian statistics with a Markov chain Monte
Carlo simulation is developed to derive the values of the model’s parameters based on historical information. The applicability of the model
was demonstrated through an empirical example using data from a Japanese highway road link. DOI: 10.1061/(ASCE)IS.1943-555X
.0000242. © 2014 American Society of Civil Engineers.
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Introduction

In recent years, there has been significant development and applica-
tion of statistical models in the field of infrastructure asset
management. Particularly, in pavement management systems (PMS)
and bridge management systems (Madanat and Ibrahim 1995;
Anastasopoulos et al. 2011; Kobayashi et al. 2012a), statistical mod-
els are preferred due to their capability to incorporate uncertainties
inherently embedded in deterioration forecasting and management of
civil infrastructure. Among the existing statistical models, Markov
models have been widely used. In Markov models, deterioration
of civil infrastructure is expressed through transition probabilities
between discrete condition states (CS), which are deduced values
or composite values of performance indicators (e.g., pavement
roughness, cracks on bridge decks) (Thomas and Sobanjo 2013).

Performance indicators provide important information about
the physical condition of an infrastructure object. Such information
is then used as input for deterioration forecasting models and
decision-makingmodels.With currentmonitoring activities in pave-
ment engineering, performance indicators (pavement distresses)
can be measured by high-speed inspection cars equipped with high-
definition cameras and sensors. Inspections are scheduled activities

that are executed periodically, e.g., once every 2 or 3 years. In con-
nection with inspections, Markov models can be used to predict the
deterioration of an infrastructure object and determine optimal in-
tervention strategies for that object and its network (Robelin and
Madanat 2007; Kuhn 2012).

Beside the periodic inspections, road administrators are required
to perform more frequent patrols. Patrols are needed to promptly
detect obstacles appearing on road sections and local damage such
as potholes. Potholes can dangerously disturb the riding quality
of road users and are therefore either mended on the spot or shortly
after being detected. Patrols and inspections are therefore con-
sidered as two different monitoring activities, with different
objectives. Patrols can also be considered as a type of periodic in-
spection. However, in this paper, patrols and inspections are treated
as two separate activities denoting two fundamentally different
kinds of inspection. Patrols are carried out more frequently than
inspections. The objective of patrols is not only to detect local dam-
age but also to observe other risk factors, which are not directly
associated with the physical condition of roads. Patrols can some-
times be very important and are fundamentally required on a daily
or weekly basis. This is particularly true in the case of highway
management where vehicles travel at high speed and a high level
of safety and riding quality is expected.

From these different monitoring activities, a PMS database
includes values of various pavement indicators and local damage
for every road section. When inspecting the database, one can see at
a glance that deterioration of a road section is not merely a single
process but consists of multiple processes. For example, cracks
and potholes appearing on a road section can be attributed to two
different deterioration processes. Cracks are more manifest and
mainly caused by weather, runoff, construction, and maintenance,
while the occurrence of potholes could be due to repeated vibra-
tion from axle loads and the development of cracks (O’Flaherty
2002). Differences in deterioration processes can be also distin-
guished by examining the values of pavement indicators and local
damage. Cracks are measured as a percentage of cracking area and
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roughness is measured as a continuous value on the international
roughness index. The evolution of cracks and roughness over
time can be deterministically followed by exponential functions.
However, the evolution of potholes (local damage) is quantified in
integers; thus, a counting process, such as Poisson distribution, is
typically employed.

There are at least two deterioration processes involved in the
course of deterioration prediction for a road section: one is the pro-
cess causing local damage and the other is the process that can be
regularly measured through periodic inspections. There is a physi-
cal and statistical correlation between the two processes. When
cracks appear, the probability of potholes occurring on the same
road section might be higher than when the road section has no
cracks. This phenomenon has also been mechanistically proved to
be true, e.g., a mathematical relationship between cracks and pot-
hole formation was empirically presented in the work of O’Flaherty
(2002). The cited author concluded in his work that potholes are not
accompanied by distortion of the adjacent surface. They generally
result from a cracked bituminous surface, which has allowed mois-
ture to enter and soften the pavement or penetrate horizontally
under the bituminous layer.

Decisions regarding pavement repairs (e.g., overlay, crack seal-
ing, patching) are generally made based on important indicators
such as the percentage of cracking. Moreover, the cycle of periodic
inspection is often 2 to 3 years. Once an inspection has been carried
out on a road section, in many cases, the next periodic inspection
will not be conducted for a couple of years, mainly due to budget
constraints and limitations on resources. On the other hand, pot-
holes generated on road surfaces are detected through daily patrol,
and repaired ad hoc by using room-temperature mixtures. However,
in road sections where potholes are frequently generated, it is ob-
viously necessary to conduct permanent repair, such as overlaying,
rather than ad hoc repair, from the viewpoints of the safety of
road users and the cost of road administrators. In practice, when
cracking percentage reaches a certain level (e.g., 20% in Japan),
overlaying is recommended. However, it is difficult for road admin-
istrators to understand the relationship between the frequency of
pothole occurrence and the need of overlaying. Therefore, road ad-
ministrators insist on the necessity to overlay for individual road
sections prone to potholes or repeat ad hoc countermeasures until
the crack rate reaches 20%, while knowing from their experience
that there is a high correlation between potholes and crack rate. If
the relation between potholes and crack rate can be evaluated quan-
titatively with the proposed Poisson hidden Markov model, it will
become possible to make decisions about ad hoc or permanent
repair, based on the data of pothole generation that is obtained
through daily patrols.

To formulate a statistical relation between the two deterioration
processes, this study makes the following assumptions:
1. The deterioration process of localized damage such as

potholes is modeled with a stochastic Poisson process. This
assumption is realistic enough as the Poisson process is appro-
priately used for modeling count events (count events can also
be followed by other stochastic distributions such as negative
binomial distribution or zero-inflated distribution). In general,
Poisson distribution is easier to work with compared to others,
e.g., Poisson distribution has one parameter and negative
binomial distribution has two parameters (Kaburagi and
Matsumoto 2008; Paroli et al. 2000).

2. The process of surface deterioration is modeled with a Markov
model. This assumption is also appropriate as modeling
pavement surface with a Markovian approach has been
widely used in the field of infrastructure asset management

(Madanat and Ibrahim 1995; Robelin and Madanat 2007;
Kobayashi et al. 2012a, b; Thomas and Sobanjo 2013).

3. Local damage is monitored in short time intervals (daily,
weekly), while pavement indicators such as cracks and
roughness are measured periodically, and at much longer
time intervals than the monitoring of local damage. Thus,
the information on local damage can be used to improve
the quality of deterioration prediction with Markov models,
and vice versa.

The preceding example of potholes and cracks represents only
part of a greater picture that has spurred the formulation of the new
mathematical model presented in this paper. At first, the study
aimed to develop a hierarchical Markov model that could consider
at least two deterioration processes simultaneously. This type of
model has been discussed in the field of econometrics, where many
authors have tried to estimate the stochastic frontiers of products or
cost of business firms based on unobserved heterogeneity factors
(Kumbhakar and Lovell 2000). It can also be found in the literature
of bioinformatics or pattern and speech recognition in informatics
and communication science, where researchers try to use hidden
Markov models to reveal the true value of unobserved variables
[e.g., computer software detecting words based on vocal voices
or speech (Robert et al. 2000; Zucchini and MacDonald 2009)].
Secondly, it is the authors’ intention to understand the statistical
correlation between the different deterioration processes of civil in-
frastructure and to make use of available historical data to improve
the quality of deterioration prediction. Lastly, the authors are con-
vinced that this new model will motivate research developments
where hidden Markov models are used in other transportation sec-
tors (e.g., the prediction of accidents based on a switching regime
Markov model; determination of optimal inspection intervals for a
road network based on incomplete monitoring data).

In particular, with respect to the first two motivations behind the
research work, the new model will be helpful to estimate the overall
condition of pavement at any time between infrequent inspections.
In this way, infrastructure managers will be able to decide when and
where to execute inspections to reveal the true values of pavement
indicators. Furthermore, in statistical terms, the overall deteriora-
tion curve of a pavement is expected to have higher accuracy in
comparison with conventional Markov models using only two sets
of data from long-interval inspections, e.g., sometimes the interval
between two inspection times is considerably long (4 or 5 years),
which impairs the accuracy of the deterioration curve.

In summary, this study proposes a Poisson hidden Markov
model to depict the composite deterioration process that is com-
prised of localized damage and surface deterioration. To model
the manifest deterioration of pavement indicators, this study em-
ploys the existing Markov model of Kobayashi et al. (2012a). The
deterioration process concerning local damage is modeled with a
Poisson distribution. In order to obtain the values of the model’s
parameters, an algorithm was developed based on a Bayesian es-
timation approach and a Markov chain Monte Carlo (MCMC) sim-
ulation. A numerical example was conducted using a data set from
Japan to verify the applicability of the model.

Formulation of the Model

Preconditions

Fig. 1 presents a graphical representation of the deterioration
processes and observations of local damages and other pavement
indicators for a road section. In the figure, polygon boxes and
round boxes indicate local damage and other pavement indicators
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(e.g., cracks, roughness), respectively. It is assumed that intervals
of inspecting local damage and other pavement indicators are not
the same. The local damages are observed more frequently than
the other pavement indicators. The values of other pavement indica-
tors, hereafter referred to as pavement indicators are periodically
measured but with longer interval time between two consecutive
inspections. For example, local damages such as potholes are often
observed by patrols on a weekly or monthly basis, but inspec-
tions to reveal values of cracks and roughness are carried out on a
yearly basis.

Along the time axis (Fig. 1), values of pavement indicators are
measured periodically at time tnðn ¼ 0; 1; : : : ;NÞ. For instance,
the values at time tn and tnþ1 are hðtnÞ ¼ i and hðtnþ1Þ ¼ j, respec-
tively. It is noted that in this paper, values of pavement indicators
hðtnÞ ¼ i and hðtnþ1Þ ¼ j are referred to as discrete condition
states [i; j ¼ ð1; : : : ; IÞ with I as the absorbing state]. In Markov
models, the continuous values of pavement indicators can be trans-
formed to fit a discrete scale. In between an interval τn from tn to
tnþ1 (τn ¼ tnþ1 − tn), it is assumed that there is no periodic inspec-
tion other than patrols. Patrols are regularly conducted at an interval
of γunðu ¼ 0; : : : ;UÞ with the purpose of disclosing any local
damage that has occurred on the surface of the road sections. These
activities are necessary in many cases in order to reduce exposing
risks such as traffic accidents that could suddenly happen due to
potholes. Once local damage has been disclosed, it is remedied
on the spot or shortly after being detected and the number of local
damage cases are registered [gðunÞ ¼ yun ]. The occurrence of local
damage is thus a counting process. It is also assumed that at the
beginning of an in-service time for a road section, the condition
state hðt0Þ ¼ 1, i.e., the road section is a new one (after construc-
tion or interventions). The condition state hðtn þ unÞ ¼ mun at any
time in between two consecutive periodic inspections (hereafter re-
ferred to as subperiod time un) is not observed by patrols.

If no intervention other than remedies for local damage
are executed during the time interval τn, the following condition
is logical:

hðtnÞ ¼ ī ≤ · · ·≤ hðtn þ unÞ ¼ mun ≤ · · ·≤ hðtnþ1Þ ¼ j̄ ð1Þ
In Eq. (1), the bar ¯ over i, j indicates that such discrete values i,

j are observable. The use of the bar ¯ has a similar meaning in sub-
sequent parts of this article. It can be seen both in Eq. (1) and in
Fig. (1) that at any time hðtnþunÞ within the interval τn, the true
value of the discrete condition state is not observable. At time
tnþun , only local damage is disclosed [gðunÞ ¼ yun ] and registered.
To simplify the notation, from this point onward, u and un are used
interchangeably to denote the subperiod time in ðtn; tnþ1Þ.

Markov Transition Probabilities

In a Markov model, an object passes from one CS to another with a
certain probability in each unit of time. The Markov transition

probability (MTP) are determined using past inspection data, and
can be estimated as described in Kobayashi et al. (2012a). An
explicit mathematical formula for estimating the MTP pij can
be obtained using data collected at times tn and tnþ1, and by defin-
ing the subsequent conditional probability of going from CS i to j,
with respect to time interval ðtn; tnþ1Þ

pij ¼ Prob½hðtnþ1Þ ¼ jjhðtnÞ ¼ i�

¼
Xj

l¼i

Yl−1
s¼i

λs
λs − λl

Yj−1
s¼l

λs
λsþ1 − λl

expð−λlτnÞ ð2Þ

where λ is hazard rate of each condition state; and i, j, s, l are
running index of condition state. The hazard rate λ can be described
as a function of characteristic variables (e.g., traffic volume, thick-
ness of pavement, bridge slab area, ambient temperature)

λi ¼ xβi ð3Þ
with x and β being vectors of characteristic variables and unknown
parameters, respectively.

The matrix of MTP for a period ½tn; tn þ u� can be expressed as
PðuÞ ¼ fPgu and the MTP pijðuÞ can be defined as

pijðuÞ ¼
Xj

l¼i

Yl−1
s¼i

λs

λs − λl

Yj−1
s¼l

λs
λsþ1 − λl

expð−λluÞ ð4Þ

Model

With the earlier assumptions, one can model the occurrence of
potholes by a Poisson process, which represents counting events
(Madanat and Ibrahim 1995; Paroli et al. 2000). With a Poisson
process, the occurrence rate of potholes μðmu; zuÞ > 0 in the
period γu is defined as follows:

μðmu; zuÞ ¼ zuαmu ð5Þ

In Eq. (5), zu ¼ ðz1;u; : : : ; zP;uÞ and αmu ¼ ðαmu
1 ; : : : ;αmu

P Þ 0 are
vectors of characteristic variables at subperiod time u within the
period τn [refer to Fig. (1)] and unknown parameters, respectively.
The notation P indicates the numbers of characteristic variables
(e.g., traffic volume, pavement thickness).

Statistically, the occurrence rate μðmu; zuÞ can be expressed as a
conditional probability defined in following equation:

πðyujm; zuÞ ¼ Prob½gðuÞ ¼ yujhðtn þ uÞ ¼ m; zu�

¼ exp½−μðm; zuÞ�
½μðm; zuÞ�yu

yu!
ð6Þ

In Eq. (6), the notation m is used instead of mu for better visu-
alization of the mathematical form. Without loss of generality, in
subsequent parts of the paper, mu and m will be used interchange-
ably in some mathematical polynomials for ease of reading. This
equation infers that the probability of observing yu potholes at
subperiod time u is dependent on the probability that the discrete
condition state hðtnþuÞ ¼ m. In other words, there exists statistical
correlation between the numbers of potholes that might occur and
the underlying true condition state of pavement indicators. Also, in
Eq. (6), the sum of probabilities of all events must equal 1,
i.e.,

P∞
yu¼0 πðyujmÞ ¼ 1. In addition, the probability ρuðmjiÞ of

observing hðtnþuÞ ¼ m at time tnþu is also a conditional probability
of the event that its value is i at time hðtnÞ

ρuðmjiÞ ¼ Prob½hðtn þ uÞ ¼ mjhðtnÞ ¼ i� ¼ pi;mðuÞ ð7Þ

1(1 )n n
g y= 2(2 )n n

g y= ( )n un
g u y= 1( 1)n un

g u y ++ =

nt 1nt +1n 2n nu 1nu +

1n
γ un

γ

( )nh t i=

1( )nh t j+ =

1( 1 )n n n
h t m+ =

2( 2 )n n n
h t m+ = ( )n n un

h t u m+ =

Local damages 
(e.g. number of potholes)

Pavement indicators
(e.g. condition states)

1( [ 1])n n un
h t u m ++ + =

Fig. 1. Scheme of patrols and inspections
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Based on Eqs. (6) and (7), one can define the probability
~πuðyu; zuÞ that guarantees the event yu numbers of potholes have
been occurred within a subperiod time interval γu

~πuðyu; zuÞ ¼
Xj

m¼i

πðyujmu; zuÞρuðmujiÞ ð8Þ

Here, we can estimate the likelihood Lðξ̄n; θÞ of having all
observed information ξ̄n ¼ fyu; zn; ī; j̄g in a time period τn ¼
½tn; tnþ1�. This information vector includes a vector representing
the numbers of potholes (ȳu) occurring by subperiod time u and
a vector concerning the true value of condition states (ī, j̄) observed
at time tn and tnþ1. In recursive form, the likelihood function
Lðξ̄n; θÞ is expressed as follows:

Lðξ̄n; θÞ ¼ πðȳ0jī; z0Þ
Xj

m1¼i

pī;m1
l1ðm1Þ ð9aÞ

luðmuÞ ¼ πðȳujmu; zuÞ
Xj

muþ1¼mu

pmu ;muþ1
luþ1ðmuþ1Þ ð9bÞ

ð1 ≤ uw ≤ Tn − 1ÞlU−1ðmU−1Þ ¼ πðȳU−1jmU−1; zU−1ÞpmU−1;j̄

ð9cÞ

The vector of unknown parameter θ is comprised of α and β,
which are defined in Eqs. (3) and (5), respectively.

Estimation Method

Data Set

In the management of a highway road network, data are collected
for individual road sections. It is assumed that there are K road
sections. The index of each road section is k ¼ ð1; : : : ;KÞ. Thus,
the observed data set of a road section k can be generalized as
a vector ξ̄kn ¼ ½yku; zkn; h̄kðtnÞ; h̄kðtnþ1Þ�. Eventually, a total set
Ξ̄ ¼ fξ̄kn∶n ¼ 1; : : : ;N; k ¼ 1; : : : ;Kg, which includes the panel
data of all road sections in different time intervals, is used to con-
struct a full likelihood functional form LðΞ̄; θÞ

LðΞ̄; θÞ ¼
YK
k¼1

YN
n¼1

Lðξ̄kn; θÞ ð10Þ

Up until this point, it can be concluded that the objective of
our estimation is to estimate the value of parameter vector θ̂ that
maximizes the likelihood function in Eq. (10).

The likelihood function of the model involves high-order
nonlinear polynomials, with a large number of solutions for the
first-order optimality conditions (Robert et al. 2000). With such
a likelihood function it is not feasible to use the conventional maxi-
mum likelihood estimation (MLE) approach. In order to obtain the
parameter values of the model, it is suggested in Bayesian statistics
that a complete likelihood function must be derived using posterior
distributions of models parameters (Geman and Geman 1984;
Jeff 2006).

Complete Likelihood Function

For a road section k, its condition states observed at hðtnÞ
and hðtnþ1Þ are īkn, j̄knþ1. During the period τn ¼ ðtn; tnþ1Þ, the
representation of the condition state at the respective subperiod

time u is a vector mk
n ¼ ðmk

1; : : : ;m
k
U−1Þ. Eq. (1) thus can be re-

written as

īkn ≤ mk
1 ≤ · · · mk

u · · ·≤ mk
U−1 ≤ j̄knþ1 ð11Þ

This vector is assumed to represent the true condition state of the
road section at subperiod time u. However, it is unmeasurable and
thus remains hidden. As we aim to uncover the hidden condition
state, the word hidden condition states is therefore excluded. In-
stead, the term potential variable mk

n ¼ ð ~mk
1; : : : ~m

k
u : : : ; ~mk

U−1Þ is
used, with ∼ representing the possibility that it must be predicted.
In addition, the dummy variable δksu is introduced to specify the
condition that the potential variable must be satisfied

δksu ¼
�
1 ~mk

u ¼ sku
0 ~mk

u ≠ sku
; ðsku ¼ īkn; : : : ; j̄kn; u ¼ 1; : : : ;U − 1Þ

With the introduction of the potential variable mk
n and the

dummy variable δksu , the likelihood function defined in
Eqs. (9a)–(9c) can be rewritten as follows:

L̄ðmk; ξ̄kn; θÞ ¼
YU−1

u¼0

Yj̄k
skuþ1

¼īk
πkðȳujsku; z̄kuÞδksu fpsku;skuþ1

gδksu

¼
YU−1

u¼0

πkðȳuj ~mk
u; z̄kuÞp ~mk

u ; ~mk
uþ1

ð12Þ

In Bayesian statistics, the likelihood function defined in
Eq. (12) is often referred to as the complete likelihood function
(Jeff 2006). Using this function, it is possible that a full conditional
posterior distribution of the potential variable mk

u ¼ m½m ∈
ð ~mk

u−1; : : : ; ~mk
uþ1Þ� can be estimated

Probðmk
u ¼ mjmk−uÞ ¼

L̄ðmk−u; ξ̄kn; θÞP ~mk
uþ1

m¼ ~mk
u−1

L̄ðmk−u; ξ̄kn; θÞ

¼ πkðȳkujm; zkuÞωk
m;tð ~mk

u−1; ~mk
uþ1ÞP ~mk

uþ1

m¼ ~mk
u−1

πkðȳkujm; zkuÞωk
m;tð ~mk

u−1; ~mk
uþ1Þ
ð13Þ

where

mk−u ¼ ð ~mk
1; : : : ; ~m

k
u−1; ~mk

uþ1; : : : ; ~m
k
UÞ;

mm;k−u ¼ ð ~mk
1; : : : ; ~m

k
u−1;m; ~mk

uþ1; : : : ; ~m
k
UÞ; and

ωk
m;tð ~mk

u−1; ~mk
uþ1Þ ¼

8>><
>>:

pk
j̄n;m

pk
m; ~m2

u ¼ 1

pk
~mu−1;mp

k
m ~muþ1

2 ≤ u ≤ U − 2

pk
~mU−2;mp

k
m;j̄n

u ¼ U − 1

ð14Þ

Apparently, if one can obtain the occurrence probability of
potholes πkðȳkujm; z̄kuÞ and the MTP pk

m; ~mk
uþ1

ðu ¼ 0; : : : ;U − 1;

n ¼ 0; : : : ;N; k ¼ 1; : : : ;KÞ, one can derive the full conditional
posterior distribution of condition state mk

u ∈ f ~mk
u−1; : : : ; ~mk

uþ1g
at the subperiod time u given the condition state mk−u.

Using the MCMC method, which takes advantage of the
full conditional posterior probability [Eq. (27)], the potential var-
iable m is generated randomly, and the parameters α, β are
estimated. The use of the MCMC method is further described in
subsequent sections.
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Estimation Algorithm

MCMC Method

The numerical estimation of parameter values of mixture distribu-
tion models in general, and of the proposed model in particular, is
not feasible with conventional MLE methods since the mathemati-
cal setup of the models results in a high-order nonlinear likelihood
function (Robert et al. 2000; Kobayashi et al. 2012a). To overcome
the limitation of the MLE approach, Bayesian statisticians recom-
mend the use of the MCMC method. This section describes a
MCMC algorithm developed to obtain the parameter values of the
proposed model.

First, it is necessary to define conjugate prior distributions for
unknown parameters αi and βi. This paper hypothesizes that the
prior distributions for the two parameters follow a multivariate nor-
mal distribution, i.e., αi ∼N Pðζ i;α;Σi;αÞ and βi ∼N Qðζ i;β;Σi;βÞ.
The probability density functions (PDF) of αi and βi are respec-
tively shown in Eqs. (15) and (16):

ϕðαijζ i;α;Σi;αÞ¼ 1

ð2πÞP=2
ffiffiffiffiffiffiffiffiffiffiffi
jΣi;αj

p
× exp

�
−1

2
ðαi− ζ i;αÞðΣi;αÞ−1ðαi− ζ i;αÞ0

�
ð15Þ

ψðβijζ i;β;Σi;βÞ ¼ 1

ð2πÞQ=2
ffiffiffiffiffiffiffiffiffiffiffi
jΣi;βj

p
× exp

�
−1

2
ðβi − ζ i;βÞðΣi;βÞ−1ðβi − ζ i;βÞ 0

�
ð16Þ

In Eqs. (15) and (16), the signs ζ and Σ represent the prior
expected value of the parameters and prior variance covariance
matrix.

A complete posterior PDF is then defined as

ρðα; βjm; ξÞ ∝ Lðα; β;m; ξÞ
YI−1
i¼1

fϕðαijζ i;α;Σi;αÞψðβijζ i;β ;Σi;βÞ

∝ YK
k¼1

YN
n¼1

YTn−1

un¼0

�
expð−zkunα ~mk

un Þðzkunα ~mk
un Þȳkun · Γ

�
· Λ

ð17Þ

where

Γ ¼
X~mk

uþ1

l¼ ~mk
u

� Yl−1
h¼ ~mk

u

λk
h

λk
h − λk

l

Y~mk
uþ1

h¼l

λkh
λk
hþ1 − λk

l

expð−λkl Þ
�

ð18Þ

Λ ¼
YI−1
i¼1

exp

�
− 1

2
ðαi − ζ i;αÞðΣi;αÞ−1ðαi − ζ i;αÞ 0

− 1

2
ðβi − ζ i;βÞðΣi;βÞ−1ðβi − ζ i;βÞ 0

�
ð19Þ

Gibbs Sampling

Gibbs sampling (Geman and Geman 1984) is a powerful MCMC
algorithm that has been widely used in Bayesian statistics. This
paper applies the Gibbs sampling algorithm to obtain the value of
the posterior PDF ρðα; βjm; ξÞ and then extracts samples of param-
eters α and β.

The following steps briefly describe the Gibbs sampling
algorithm:

Step 1: Select Initial Values
1. Randomly select the value of prior distribution [Eqs. (15)

and (16)] parameter vector (matrix) ζ i;r;Σi;rði ¼ 1; : : : ; I − 1;
r ¼ α;βÞ;

2. Select initial values of potential variable mð0Þ ¼
½mkð0Þ

n ∶k¼ 1; : : : ;K;n¼ 1; : : : ;N�, mkð0Þ
n ¼ ½ ~mkð0Þ

1 ; : : : ; ~mkð0Þ
Un−1�

under the condition defined in Eq. (11);
3. Randomly select initial values of parameters αð0Þ and βð0Þ; and
4. The influence of initial values grows weaker in proportion

to the increasing numbers of the MCMC simulations. The
number of MCMC samples v is v ¼ 1.

Step 2: Extract Samples of α�v�

Based on the value of potential variable ~mðv−1Þ defined in the pre-
vious step, in this step the parameter values associated with the
occurrence rate of potholes αðvÞ ¼ ½α1ðvÞ; : : : ; αI−1ðvÞ�, αiðvÞ ¼
½αiðvÞ

z ∶z ¼ 1; : : : ;P� can be derived. The Gibbs sampler used in this
step is then defined in conjunction with the complete conditional
posterior density function ρ½αðvÞjmðv−1Þ; ξ�

ρ̂½αiðvÞjmðv−1Þ; ξ� ∝ YK
k¼1

YN
n¼1

YUn

un¼0

×
n
exp

h
−zkunα ~mkðv−1Þ

un ðvÞ
ih
zkunα

~mkðv−1Þ
un ðvÞ

i
ȳkun

oδunki

× exp

�
− 1

2
½αiðvÞ − ζ i;α�ðΣi;αÞ−1½αiðvÞ − ζ i;α� 0

�
ð20Þ

where δunki is a dummy variable governed by the following
conditions:

δunki ¼
�
1 when ~mk

un ¼ i
0 otherwise

ð21Þ

Furthermore, the unknown parameter αi
p can be defined condi-

tionally on αi−p (p is an index number in a set of P components).

ρ̂½αi
pjαi−p;mðv−1Þ; ξ� ∝ YK

k¼1

YN
n¼1

YUn

un¼0

×

�
exp

�
−zkp;unα ~mkðv−1Þ

un ðvÞ
p

��
zkunα

~mkðv−1Þ
un ðvÞ

�
ȳkun

�δunki

× exp

�
−σi

pp

2
ðαi

p − ζ̂ipÞ2
�

ð22Þ

ζ̂ip ¼ ζip þ
XP

h¼1;≠p

ðαh
h − ζihÞσi

hp ð23Þ

In Eq. (23), values of αi−p and ~mðv−1Þ are known from the
previous step. ζip is the number pth component of the prior expect-
ation vector ζ i, and σi

hp is the number ðh;pÞ component of prior
distribution variance-covariance matrix Σi−1. Moreover,

P
P
h¼1;≠p

is the sum total of components from 1 to P, excluding p. Here,
αðvÞ ¼ ½α1ðvÞ

1 ; : : : ;αI−1ðvÞ
Q � is randomly sampled with the following

procedures:
1. Step 2-1 Randomly generate ρ̂½α1ðvÞ

1 jα1ðv−1Þ
−1 ;mðv−1Þ; ξ�

from α1ðvÞ
1 .

2. Step 2-2 Randomly generate ρ̂½α1ðvÞ
2 jα1ðv−1Þ

−2 ;mðv−1Þ; ξ�
from α1ðvÞ

2 .
3. Step 2-3 Repeat these steps.
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4. Step 2-4 Randomly generate ρ̂½αI−1ðvÞ
P jαI−1ðv−1Þ

−P ;mðv−1Þ; ξ�
from αI−1ðvÞ

P .
It is noted that in the algorithm an adaptive rejection sampling

method (Gilks and Wild 1992) is used to sample parameter α
from Eq. (23).

Step 3: Extract Samples of β�v�

In this step, samples are extracted of parameter βðvÞ. The Gibbs
sampler ρ̂½βe

qjβe−q;mðv−1Þ; ξ� of βe
q, when βe−q is already known,

is defined by

ρ̂½βe
qjβe−q;mðv−1Þ; ξ� ∝ Yi

i¼1

YI
j¼i

YK
k¼1

YUn−1

un¼1

×

"Yj−1
l¼i

ðβi
qxkqÞδ

ukn
ij −δu

k
n

ie

Xj

h¼i

Yh−1
l¼i

λkl
λkl − λkh

Yj−1
l¼h

λkl
λk
lþ1 − λkh

expð−λkhÞ
#
δtkij

× exp

�
−σe

qq

2
ðβe

q − ζ̂eqÞ2
�

ð24Þ

where

ζ̂eq ¼ ζeq þ
XQ

h¼1;≠q

ðβe
h − ζehÞσe

hq ð25Þ

and δunkie and δunkij are dummy variables satisfying the following
conditions:

δunkie ¼
�
1 when ~mk

un ¼ i ¼ e

0 otherwise
and

δunkij ¼
�
1 when ~mk

un ¼ i; ~mk
unþ1 ¼ j

0 otherwise
ð26Þ

and ζeq is the qth component of the prior expectation vector ζe,
and σe

hq is the number ðh; qÞ component of the prior distribution
variance-covariance matrix Σe−1.

Step 4: Update Potential Variable
Now random samples can be generated of the new potential
variable mðvÞ based on full conditional posterior probability

[Eq. (13)]. Here, the potential variable vector is defined as mkðvÞ−un ¼
½ ~mkðvÞ

1 ; : : : ; ~mkðvÞ
un−1; ~m

kðvÞ
unþ1; : : : ; ~m

kðvÞ
Tn−1�. At this time, the full condi-

tional posterior probability of mkðvÞ
un fmkðvÞ

un ∈ ½ ~mkðvÞ
un−1; : : : ; ~m

kðvÞ
unþ1�g is

Prob½mkðvÞ
un ¼ mjαðvÞ;mkðv−1Þ−un ; ξ�

¼
πk
h
ȳkðvÞun

���m; zkun

i
ωk
m;un

h
~mkðvÞ
un−1; ~m

kðv−1Þ
unþ1

i
P ~mkðv−1Þ

unþ1

m¼ ~mkðvÞ
un−1

πk
h
ȳkðvÞun

���m; zkun

i
ωk
m;un

h
~mkðvÞ
un−1; ~m

kðv−1Þ
unþ1

i ð27Þ

For every kðk ¼ 1; : : : ;KÞ; n ¼ 1; : : : ;N, the potential variable
~mkðvÞ
un ðun ¼ 1; : : : ;UnÞ is obtained, from un ¼ 1.

Step 5: Decide to End Algorithm
In this step, values of parameters αðvÞ, βðvÞ are recorded, as well as
the value of the potential variable ~mðvÞ. If v < v̄, then v ¼ vþ 1,
and the program will return to Step 2. If not, the algorithm ends.

Moreover, in order to eliminate the bias that could potentially
be embedded in the obtained values of parameters and potential
variables, all sampling values generated in a certain initial number
of iterations will be dropped. This practice is recommended in
Bayesian statistics (Geweke 1996; Jeff 2006). In Bayesian statis-
tics, samples are generated in hundreds or thousands of iterations

until their values converge to stable states (Geweke 1996). Values
of samples in initial iterations are removed, e.g., if there are 10,000
iterations, values of the first 3,000 iterations are removed.

Finally, the remaining generated values of the model’s param-
eters and potential variable are checked with the Geweke (1996)
method, which is a standard test extensively used in Bayesian sta-
tistics to verify the significance of estimation results.

Example

Overview

The model was tested with a numerical example using a data set of
a two-lane highway link in Japan. The data set was collected over a
period from August 2007 to September 2011. The link is located in
an urban area and it has a heavy daily traffic volume (DTV), i.e., ap-
proximately from 17,000 to 35,000 vehicles per day. Records in the
data set were stored in 1,671 sections. Each road section belongs to
one of three road types (earthwork-embankment, earthwork-cut,
and bridge). The majority of the sections are of the earthwork types
(more than 90%). Data on pavement indicators such as cracks,
roughness, and unevenness were measured on a yearly basis.
Data on potholes were recorded every time a patrol was executed.
On average, the duration between pothole occurrences is about
450 days. There were 366 total potholes that were distributed
on 143 road sections. A summary of the data is shown in Table 1.

Within the investigated period, there were in total 366 potholes.
This number includes potholes that occurred at the same location at
different patrol times. At a glance, it was realized from the data set
that the number of potholes on sections with heavier DTV were
significantly higher than on sections with less DTV. In addition,
the number of potholes were also different with respect to road
types. As can be seen from Table 1, more potholes were observed
in the cruising lane than in the passing lane.

To apply the model on the data set, the study transformed the
continuous value of cracks into five discrete condition states (CSs)
(Table 2), with CS 1 representing no cracks and CS 5 including the
cases when the percentages of cracks on a section was greater than
or equal to 10%. It is important to note that the CS can be a
composite index that includes several indicators (Talvitie 1999).
This example selected only the crack as an indicator to demonstrate
the applicability of the model. In addition, the choice of using only
five condition states, with their thresholds, was rationally based
on the fact that in Japan, if percentages of cracks on the surface
of a highway section get to be more than 10%, the road section

Table 1. Overview of Data

Road structure Bridges
Earthwork

(embankment)
Earthwork

(cut) Total

Lane (cruising) 117 162 20 299
Lane (passing) 20 23 24 67
Total 137 185 44 366

Table 2. Definition of Condition States

Conditionstates Crack percentage (Cr%)

i ¼ 1 Cr ¼ 0

i ¼ 2 0 < Cr < 2.5
i ¼ 3 2.5 ≤ Cr < 5

i ¼ 4 5 ≤ Cr < 10

i ¼ 5 10 ≤ Cr
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is considered to be in bad state. Thus, a scale of 5 is good enough to
represent how a road deteriorates with respect to cracks (Kaito
et al. 2007).

Estimation Results

Following the steps described in the section “Estimation Algorithm,”
a numerical calculation was performed with 15,000 iterations of
the Gibbs sampler and the MCMC simulation. Convergence of
parameter values was reached after the first 5,000 iterations, indicat-
ing the model’s robustness. Estimation results were obtained
along with their statistical tests for parameters βi [Eq. (3)] and αi
[Eq. (5)], hazard rate E½λi� of each CS i (crack), expected duration
E½RMD�, and occurrence rate of potholes E½μi�.

Expected Values of βi
In Table 3, values of parameters βi are shown along with their
statistical test values (confidence intervals and Z-score values of
the Geweke test). βi;1 and βi;2 represent a constant term and traffic
volume, respectively. In addition, the expected hazard rate E½λi�
and the duration of staying in each CS i are also given. The test
was performed for samples of the last 10,000 iterations (the first
5,000 samples were dropped to eliminate bias). The obtained
Z-score values for all parameters are lower than 1.96, which com-
pares well with the estimation results. If the value of Z-score is less
than 1.96, it means the convergent hypothesis cannot be dismissed
at a significant level of 5% (Geweke 1996).

Using Eq. (3), expected values of hazard rates E½λi� were cal-
culated. The obtained values of hazard rates were then used in
Eq. (2) to derive the values of the MTP (Table 4). The MTP values
in Table 4 were estimated for 1 month. It can be seen that values of
the MTP in the diagonal cells of the MTP matrix are very high
(more than 0.98) compared to that of the other cells. There are cases

in which values of the MTP between two CSs were close to 0, in-
ferring an extremely small probability of transition. Because of
these reasons, this study used only three digits for the values of the
MTP in Table 4, and that explains why there are some cells with 0
values.

After values of the hazard rates λi and the m.t.p πij are esti-
mated, deterioration curves (Fig. 2) and the distribution of CSs
(Fig. 3) over time can be drawn. It is noted that in order to draw
the deterioration curves in Fig. 2, the authors separately performed
the calculation of the model on three different levels of heavy DTV.
The average DTV was 24,184 vehicles=day, while the maximum
and minimum value of heavy DTV were set to be 35,153 and
17,049 vehicles=day, respectively. The purpose of having three dif-
ferent DTV scenarios was to understand the influence of the DTV
on the deterioration (hazard rate) of the pavement sections.

It can be concluded from Fig. 2 that under average DTV it takes
about 37 years for a road section to reach CS 5 from CS 1. The
deterioration speed of cracking is fastest from CS 1 to CS 2 (about
7 years), then it becomes slower from CS 2 to CS 3 (more than
10 years). From CS 3 to CS 4 and from CS 4 to CS 5, the deterio-
ration speed becomes a bit faster than that of CS 2 to CS 3. In the
case of having the maximum DTV, the deterioration speed tends to
be two times faster than in the case of having average DTV (it takes
almost 17 years to reach CS 5 from CS 1). In a similar pattern, if the
DTV is reduced to a minimum value, the deterioration speed of
a road section becomes about twice as slow as the average one
(it takes about 73 years to reach CS 5 from CS 1). The deterioration
pattern of a road section can be further seen in the distribution
of CSs (Fig. 3). After about 3.5 years in service, there were about

Table 3. Parameter Values Associated with Markov Properties

Condition
states

Constant
terms (βi1)

Traffic
volume (βi2)

Hazard
rate

[EðλiÞ]
Duration
[EðRMDÞ]

i ¼ 1 −4.801 1.066 — —
(−5.064, −4.612) (0.769, 1.467) 0.017 4.869

−0.020 0.014 — —
−6.408 1.821 — —

i ¼ 2 (−6.698, −6.045) (1.274, 2.239) 0.006 14.441
−0.107 0.112 — —
−5.785 2.175 — —

i ¼ 3 (−6.193, −5.346) (1.511, 2.766) 0.014 6.074
0.139 −0.138 — —
−8.944 5.895 — —

i ¼ 4 (−9.640, −8.245) (5.007, 6.744) 0.008 11.067
−0.024 0.024 — —

Note: In each cell, the first value is the expected value of the parameter, the
second values in parentheses are the confidence interval, and the last value
is the Z-score value of the Geweke test.

Table 4. Markov Transition Probabilities

Prior Posterior condition states

CSs i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5

i ¼ 1 0.984 0.016 0.000 0.000 0.000
i ¼ 2 0.0 0.993 0.007 0.000 0.000
i ¼ 3 0.0 0.0 0.986 0.014 0.000
i ¼ 4 0.0 0.0 0.0 0.994 0.006
i ¼ 5 0.0 0.0 0.0 0.000 1.000
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50% of road sections (or fraction of a road section) entering CS 2
from CS 1, and after about 33 years in service, 50% of road sections
reach CS 5.

Expected Values of αi
The expected occurrence rate of potholes on each condition state
was also estimated along with the expected value of βi. The results
are summarized in Tables 5–7 and in the graphs in Figs. 4–6.

Table 5 shows the values of parameter αi, which is the occur-
rence rate of potholes within each CS i. In this example, there are
five CSs; thus, the occurrence rates of Poisson distribution function
were defined for each CS i ðαiÞ. Table 5 also gives the values of
confidence intervals and Z-score values of the Geweke test. It can
be concluded from the parameter values αi that the higher the CSs,
the greater the values of occurrence rates. In other words, the more
frequently that cracks occur, the more frequently do potholes occur.
This conclusion can be further confirmed by interpreting the curves

in Fig. 4. The figure shows the cumulative occurrence probability
for one pothole being observed on two different road sections
having a bridge structure (cruising lane and passing lane) of 100 m
in 2-year periods. After 2 years, the probability of pothole occur-
rence on the cruising lane tends to be three times higher than on the
passing lane.

The relation between the number of potholes and its occurrence
probability in each CS within 1 year after the immediate repairs was
also investigated and the results are illustrated in Fig. 5 along with
the distributions of the probability densities for each number of

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Elapsed time (years)

C
um

ul
at

iv
e 

oc
cu

rr
en

ce
 p

ro
ba

bi
lit

y Cruising lane
Passing lane

Fig. 4. Cumulative occurrence probability (by lane, bridge)

0

0.2

0.4

0.6

0.8

1

0
1

2

3
CS 1

CS 2

CS 3

CS 4

CS 5

P
ro

ba
bi

lit
y 

de
ns

ity

No. of potholes

Condition states
CS 1
CS 2
CS 3
CS 4
CS 5

Fig. 5. Poisson distribution by condition states (after 1 year, cruising
lane, bridge)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Elapsed time (years)

C
um

ul
at

iv
e 

oc
cu

rr
en

ce
 p

ro
ba

bi
lit

y

CSs

CS 1
CS 2
CS 3
CS 4
CS 5

Fig. 6. Cumulative occurrence probability for each CS (cruising lane,
bridge)

Table 5. Parameter Estimation Results

Condition
states

Constant
terms (αi1)

Cruising ¼ 1,
passing ¼ 0

(αi2)

Bridge ¼ 1,
earthwork ¼ 0

(αi3)

Occurrence
rate

[EðμiÞ]
i ¼ 1 −9.763 4.190 0 —

(−10.629, −8.986) (3.427, 5.089) — 0.0038
−0.016 0.004 — —
−7.054 0.357 1.927 —

i ¼ 2 (−7.290, −6.825) (0.052, 0.659) (1.638, 2.211) 0.0085
−0.014 0.105 −0.036 —
−8.342 2.180 2.284 —

i ¼ 3 (−9.109, −7.668) (1.490, 2.959) (1.793, 2.757) 0.0207
0.136 −0.131 0.032 —

−10.569 5.615 2.576 —
i ¼ 4 (−11.474, −9.477) (4.539, 6.527) (2.215, 2.919) 0.0927

−0.015 0.013 0.008 —
−8.017 2.107 3.739 —

i ¼ 5 (−9.190, −6.863) (0.965, 3.300) (2.988, 4.453) 0.1140
0.142 −0.149 −0.051 —

Note: For each CS, the first row is the expected value of the parameter, the
second row the lower and the upper bounds of the 90% confidence interval
of the estimated parameter, and third row the Geweke test statistics.

Table 6. Probability Density of Pothole Occurrence after 1 Year (Bridge)

Lane

Numbers of potholes

0 1 2 3

Cruising 0.255 0.358 0.248 0.139
Passing 0.846 0.141 0.012 0.001

Table 7. Expected Numbers of Potholes (1-km Section, Cruising Lane,
Bridge)

Time
(months)

Condition states

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5

3 0 1 2 11 14
(0.456) (1.018) (2.482) (11.129) (13.677)

6 0 1 2 8 10
(0.342) (0.767) (1.862) (8.347) (10.258)

9 0 1 1 6 7
(0.228) (0.509) (1.241) (5.565) (6.839)

12 0 0 1 3 3
(0.114) (0.255) (0.621) (2.782) (3.419)
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potholes (0, 1, 2, and 3 potholes). The distributions of probability
densities of the occurrence rates of potholes at each CS in the figure
were calculated for the cruising lane of the road sections having a
bridge structure. If the road section is at CS 1, the probability of
having no pothole within the first year is about 0.96 and the prob-
ability of having one, two, and three potholes are significantly
smaller (about 4.3 × 10−3, 9.0 × 10−4, and 1.5 × 10−5, respec-
tively). On the other hand, if the percentage of cracks increases
(the index of CS increases), the probability of one or more potholes
occurring is also increased.

Table 6 further explores the relation between the probability
of potholes occurring in different lanes when they are at CS 5.
A significant difference can be seen in the probability of potholes
occuring between the cruising lane and passing lane. As a conclu-
sion, potholes tend to occur more in the cruising lane than in the
passing lane.

Similar to Fig. 4, Fig. 6 shows the curves corresponding to the
cumulative occurrence probability of having one pothole in the
cruising lane of a road section having a bridge structure within
a period of 2 years for each different CS. Evidently, the longer
the time the road section is in service, the higher the probability
of potholes occurring, and the worse the CS is, the higher the prob-
ability of potholes occurring becomes. For instance, at CS 5, the
probability reaches 0.5 after only 213 days in service. From this
result, it cannot be concluded appropriately that the durability of
immediate repairs last approximately 213 days when the percent-
age of cracks on the road section is more than 10%. The cumulative
occurrence probability of potholes of 0.5 partially implies that
in about half of the numbers of the road sections, potholes had
occurred more than once. The value of the cumulative occurrence
probability could become an important indicator for management.
For example, at the value of 0.1 of the cumulative occurrence prob-
ability, the expected number of days to have one pothole when the
road section at is CS 5, CS 4, CS 3, CS 2, and CS 1 is 30, 61, 183,
395, and 850 days, respectively.

Table 7 shows the expected number of potholes within 1 year
after immediate repairs on a road section of 1 km length. The num-
bers are given as integers after rounding off from their estimated
values shown in the brackets. Taking CS 1 as an example, it can
be observed that after 6 months, the expected value of the number
of potholes is close to 0, but the value keeps increasing in higher
CSs, i.e., at CS 3 and CS 4, the values are 1.241 and 5.565, respec-
tively. In other words, after 1 year, if one pothole was observed
on the 1-km section of road, the CS of the surface condition is
likely to be i ¼ 3; however, if more than five potholes are observed,
the CS of the entire section tends to progress to i ¼ 4. In such
a situation, the entire road section could be considered in a
heavily damaged state; consequently, intervention should be rec-
ommended rather than performing routine immediate repairs for
potholes only.

Conclusions

This paper has presented a Poisson hidden Markov model that can
be used to predict deterioration processes on pavement structures.
The model enables us to predict simultaneously two deterioration
processes of road sections: one process is the occurrence of local
damage (e.g., potholes) and the other is the manifest deterioration
of pavement indicators that could be represented by discrete con-
dition states. The two processes are statistically interdependent and
they can be mathematically formulated.

The model was empirically tested with an example using a data
set of a highway link in Japan. It was found in the estimation results

that as the road surface condition deteriorates, the probability of
having potholes occurring on the surface of highway sections tends
to increase. For instance, values of occurrence rate of potholes if
the section is in CS 5 are about 2.5 times larger than for sections
classefied as CS 1.

The authors aim to introduce a new class of Markov models to
the field of infrastructure asset management. Besides the benefit
that the quality of deterioration prediction becomes more accurate,
the authors also see a great potential for employing different classes
of hidden Markov models to solve other problems in the transpor-
tation engineering sector, such as the estimation of accident risk
associated with pavement condition or the determination of the
optimal inspection interval.

It is expected that future research extensions will include the
following topics: (1) testing the applicability and the usefulness
of the model on a wide range of data, especially data in different
regions or nations; (2) a comparative study using the proposed
model and other state-of-the-art models in deterioration prediction
to further illustrate the robustness and applicability of each model;
(3) the use of other stochastic distributions such as the negative
binomial distribution or the zero-inflated distribution instead of
the Poisson distribution to fit with different behaviors in the data
(e.g., data with overdispersion between its mean and variance); and
(4) the consideration of unobserved heterogeneity embedded in
deterioration processes [e.g., using mixture hazard models for
addressing unobserved heterogeneity factors (Lancaster 1990)].
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